terclim by ICS banner
IVES 9 IVES Conference Series 9 Veraison as determinant for wine quality and its potential for climate adapted breeding

Veraison as determinant for wine quality and its potential for climate adapted breeding

Abstract

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

The high variance in ripening time within this population was identified as major factor influencing the quality potential of the individual genotypes. This is mainly induced by the early veraison locus Ver1 on chromosome 16 genetically inherited by ‘Calardis Musqué’. Ver1 could be traced back to the early ripening ‘Pinot Noir’ (PN) clone ‘Pinot Precoce Noir’ (PPN). Many important quality attributes of the population were directly affected, especially sugars, organic acids, pH value and key aroma compounds. For some of these constituents the Ver1 locus shows the highest genetic impact in QTL analysis. Understanding the genetic base of ripening and the subsequently resulting effects on quality offers breeders knowledge and helpful tools for the early and efficient selection of genotypes carrying hidden (at least until the first full yield) potential for quality oriented climate-adaption. Furthermore, it enables the implementation of additional selection criteria in marker-assisted selection (MAS), when stacking of resistance loci is no longer the limiting factor in seedling production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tom Heinekamp1, Franco Röckel1, Maria Maglione1, Lena Frenzke2, Torsten Wenke2, Jochen Vestner3, Stefan Wanke2, Ulrich Fischer3, Reinhard Töpfer1, and Florian Schwander1*

1Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany
2Technische Universität Dresden, Institut für Botanik, Dresden, Germany
3Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

climate change, wine quality, cool climate viticulture, marker development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.