terclim by ICS banner
IVES 9 IVES Conference Series 9 Veraison as determinant for wine quality and its potential for climate adapted breeding

Veraison as determinant for wine quality and its potential for climate adapted breeding

Abstract

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

The high variance in ripening time within this population was identified as major factor influencing the quality potential of the individual genotypes. This is mainly induced by the early veraison locus Ver1 on chromosome 16 genetically inherited by ‘Calardis Musqué’. Ver1 could be traced back to the early ripening ‘Pinot Noir’ (PN) clone ‘Pinot Precoce Noir’ (PPN). Many important quality attributes of the population were directly affected, especially sugars, organic acids, pH value and key aroma compounds. For some of these constituents the Ver1 locus shows the highest genetic impact in QTL analysis. Understanding the genetic base of ripening and the subsequently resulting effects on quality offers breeders knowledge and helpful tools for the early and efficient selection of genotypes carrying hidden (at least until the first full yield) potential for quality oriented climate-adaption. Furthermore, it enables the implementation of additional selection criteria in marker-assisted selection (MAS), when stacking of resistance loci is no longer the limiting factor in seedling production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tom Heinekamp1, Franco Röckel1, Maria Maglione1, Lena Frenzke2, Torsten Wenke2, Jochen Vestner3, Stefan Wanke2, Ulrich Fischer3, Reinhard Töpfer1, and Florian Schwander1*

1Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany
2Technische Universität Dresden, Institut für Botanik, Dresden, Germany
3Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

climate change, wine quality, cool climate viticulture, marker development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Présentation d’une méthodologie de caractérisation des terroirs et valorisation par l’étude de l’effet terroir sur la typicité et l’originalité du produit vin dans la région des Côtes du Rhône

In the global economic context, an Appellation d’Origine Contrôlée must now more than ever control the typicity and originality of the wines it produces. It is in this spirit that the Côtes du Rhône have decided to acquire the means necessary for this control.

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.