terclim by ICS banner
IVES 9 IVES Conference Series 9 Veraison as determinant for wine quality and its potential for climate adapted breeding

Veraison as determinant for wine quality and its potential for climate adapted breeding

Abstract

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

The high variance in ripening time within this population was identified as major factor influencing the quality potential of the individual genotypes. This is mainly induced by the early veraison locus Ver1 on chromosome 16 genetically inherited by ‘Calardis Musqué’. Ver1 could be traced back to the early ripening ‘Pinot Noir’ (PN) clone ‘Pinot Precoce Noir’ (PPN). Many important quality attributes of the population were directly affected, especially sugars, organic acids, pH value and key aroma compounds. For some of these constituents the Ver1 locus shows the highest genetic impact in QTL analysis. Understanding the genetic base of ripening and the subsequently resulting effects on quality offers breeders knowledge and helpful tools for the early and efficient selection of genotypes carrying hidden (at least until the first full yield) potential for quality oriented climate-adaption. Furthermore, it enables the implementation of additional selection criteria in marker-assisted selection (MAS), when stacking of resistance loci is no longer the limiting factor in seedling production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tom Heinekamp1, Franco Röckel1, Maria Maglione1, Lena Frenzke2, Torsten Wenke2, Jochen Vestner3, Stefan Wanke2, Ulrich Fischer3, Reinhard Töpfer1, and Florian Schwander1*

1Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany
2Technische Universität Dresden, Institut für Botanik, Dresden, Germany
3Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

climate change, wine quality, cool climate viticulture, marker development

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Climate change projections in serbian wine-growing regions

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.