Terroir 2004 banner
IVES 9 IVES Conference Series 9 Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

Phenology and bioclimate of grapevine varieties in the tropical region of the São Francisco Valley, Brazil

Abstract

[English version below]

La région de la Vallée du São Francisco, situe à 9º S, est en train d’augmenter la production des vins fins les dernières années. La région présente climat du type tropical semi-aride (climat viticole à variabilité intra-annuelle selon le Système CCM Géoviticole : “très chaud, à nuits chaudes et à sécheresse forte à sub-humide” en fonction de la période de l’année dans laquelle le raisin est produit). La recherche objective la caractérisation de la phénologie et de la bioclimatologie des raisins de cuve dans la région. Ont été évalues 4 cépages avec différents niveaux de précocité – Syrah, Cabernet Sauvignon, Muscat Canelli et Schönburger, greffés sur IAC 572, vigne en premier cycle productif conduite en système pergola. Ont été évalués les stades phénologiques suivants selon le système d’Eichhorn & Lorenz : débourrement (B) – stade 05, floraison (F) – stade 23 et véraison (V) – stade 35. La date de récolte (H) corresponde à la récolte commerciale des raisins. La durée des sous-périodes phénologiques B-F, F-V, V-H et B-H a été calculée. Sur chacun des sous-périodes, ont été calculés 16 indices climatiques thermiques et hydriques. Les résultats de la Vallée du São Francisco ont été comparés avec les mêmes cépages d’une région de climat tempérée – la Serra Gaúcha (climat “tempéré chaud, à nuits tempérées, humide” selon le Système CCM Géoviticole), située à 29º S. Les résultats ont montré que la durée de la période B-H a été de 124, 123, 116 et 104 jours pour la Syrah, Cabernet Sauvignon, Muscat Canelli et Schönburger, tandis que dans la Serra Gaúcha, la durée a été de 158, 160, 160 et 138 jours, respectivement. Pour les caractéristiques bioclimatiques, dans la Vallée du São Francisco les températures moyennes de l’air de la période B-H ont varié entre 25,4 à 28,1 ºC, tandis que dans la Serra Gaúcha les températures ont varié entre 15,8 et 21,8 ºC. L’évapotranspiration potentielle, même si elle a présenté des moyennes journalières plus élevées dans la Vallée, ont été similaires pour le total dans la période B-H entre les 2 régions. Le rayonnement solaire global de la période B-H dans la Vallée du São Francisco a été inférieur si comparé avec la Serra Gaúcha. Ce résultat est lié surtout à la latitude (photopériode) et à la durée plus courte de la période B-H en condition tropicale. Le travail présente les indices bioclimatiques par cépage et sous-période, en comparant la région de baisse avec la région de moyenne latitude. On a conclu que le cycle végétatif de la vigne (B-H) est significativement plus court dans la Vallée du São Francisco (durée moyenne, pour les 4 cépages évalués, 37 jours inférieure que dans la Serra Gaúcha). Tel comportement est dû essentiellement à un raccourcissement de la période B-F (29 jours plus court en moyenne). On observe que le comportement phénologique de la vigne dans la Vallée du São Francisco, distinct par rapport à une région de climat tempérée, peut être expliqué surtout par le bioclimat particulier trouvé en zone tropicale.

The region of the São Francisco Valley, located at 9° S, has been increasing the production of fine wines during the last years. The region has a tropical semi-arid climate (viticultural climate with intra-annual variability according to the Geoviticultural CCM System : “very warm, with warm nights, very dry to sub-humid” depending on the period of the year in which the grapes are produced). The research aims at characterizing the phenology and bioclimatology of the region’s wine grapes. Four cultivars with different levels of precocity were evaluated – Syrah, Cabernet Sauvignon, Muscat Canelli and Schönburger, grafted on IAC 572, a vineyard in its first productive cycle, using the pergola as training system. The phenological stages bud burst (B) – stage 05, flowering (F) – stage 23 and veraison (V) – stage 35 were evaluated according to the system of Eichhorn & Lorenz. The date of the harvest (H) corresponds to the commercial grape harvest. The duration of the phenological subperiods B-F, F-V V-H and B-H has been calculated. For each subperiod 16 thermal and hydric climatic indices have been calculated. The results of the São Francisco Valley have been compared with the same cultivars from a temperate climate region – the Serra Gaúcha (“temperate warm, with temperate nights, humid viticulture climate” according to the Geoviticultural CCM System), located 29°S. The results have shown that the duration of the period B-H has been 124, 123, 116 and 104 days for Syrah, Cabernet Sauvignon, Muscat Canelli and Schönburger, while in the Serra Gaúcha the duration has been 158, 160, 160 and 138 days, respectively. As for the bioclimatic characteristics, the mean air temperature in the São Francisco Valley in the period B-H have varied from 25,4 to 28,1ºC, whereas in the Serra Gaúcha the temperatures have oscillated between 15,8 and 21,8ºC. The potential evapotranspiration, even when showing higher mean day values in the Valley, was similar in both regions during the whole period B-H. The global solar radiation for the period B-H in the São Francisco Valley was lower when compared with the Serra Gaúcha. This result is related especially to the latitude (photoperiod) and the shorter duration of the B-H period under tropical conditions. The study presents the bioclimatic indices by cultivar and subperiod, comparing the region of low with that one of mean latitude. It has been concluded that the vegetative cycle of the grapevine (B-H) is significantly shorter in the the São Francisco Valley (mean duration, for the 4 evaluated cultivars, 37 days less than in the Serra Gaúcha). Such behavior is a consequence, essentially, of a shortening of the period B-F (29 days shorter in the average). It can be stated that the phenological behavior of the grapevine in the São Francisco Valley, although distinct from a temperate climate region, can be understood above all by the particular bioclimate found in the tropical zone.

 

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

U. A. Camargo (1), J.Tonietto (1), F. Mandelli (1) and F.M. de Amorim (2)

U. A. Camargo (1)(1) Embrapa – National Center for Grape and Wine Research – Cnpuv, Rua Livramento, 515; 9570000-000 – Bento Gonçalves, Brazil
(2) Grant from CNPq/FINEP

Contact the author

Keywords

Wine grapes, tropical viticulture

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.