terclim by ICS banner
IVES 9 IVES Conference Series 9 Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Abstract

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation. Furthermore, VN21 seeds exhibit anomalous development characterized by diminished lignification, substantial anthocyanin accumulation, and an inherent inability to germinate.

Transcriptomic analysis identified alterations in the phenylpropanoid biosynthesis pathway, outstanding the down-regulation of a secoisolariciresinol dehydrogenase and the up-regulation of a pinorenisol-lariciresinol reductase genes in the berry skin of VN21 compared to the reference Tempranillo Tinto clone RJ43 at veraison stage. These genes encode enzymes in the lignans branch of the phenylpropanoids pathway that are compounds that can potentially reduce the risk of certain cancers and cardiovascular diseases. Ultra-performance liquid chromatography (UPHLC) analysis in both berry skin and seed confirmed a distinct phenylpropanoid accumulation pattern between VN21 and RJ43, with an overall reduction in the accumulation of lignan compounds in VN21.

The results obtained not only contribute to understand grapevine berry development and phenolic composition but also present opportunities for targeted breeding strategies aimed at enhancing desirable traits for wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Yolanda Ferradás1,2*, Carolina Royo1, Silvia Yuste1, Pablo Carbonell-Bejerano1, Nuria Mauri1,3, Javier Ibáñez1, María José Motilva1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. De Burgos Km. 6, 26007 Logroño, Spain
2 Current address: Facultade de Bioloxía, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
3 Current address: Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

somatic variation, lignans, berry color, UPHLC, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality.
The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet.

Replay of the Wine Vision 2040 event

A webinar organised by the UBC Wine Research Centre, on June 25th 2020. About Wine Vision 2040 Wine Vision 2040 is delivered by wine-passionate, high-profile individuals keen to share ideas and views that will spark conversations within wine communities.  No...

Assessing the relationship between cordon strangulation, dieback, and fungal trunk disease symptom expression

Grapevine trunk diseases including Eutypa dieback are a major factor in the decline of vineyards and may lead to loss of productivity, reduced income, and premature reworking or replanting. Several studies have yielded results indicating that vines may be more likely to express symptoms of vascular disease if their health is already compromised by stress. In Australia and many other wine-growing regions it is a common practice for canes to be wrapped tightly around the cordon wire during the establishment of permanent cordon arms. It is likely that this practice may have a negative effect on health and longevity, as older cordons that have been trained in this manner often display signs of decay and dieback, with the wire often visibly embedded within the wood of the cordon. It is possible that adopting a training method which avoids constriction of the vasculature of the cordon may help to limit the onset of vascular disease symptom expression. A survey was conducted during the spring of two consecutive growing seasons on vineyards in South Australia displaying symptoms of Eutypa lata infection when symptomless shoots were 50–100 cm long. Vines were assessed as follows: (i) the proportion of cordon exhibiting dieback was rated using a 0–100% scale; (ii) the proportion of canopy exhibiting foliar symptoms of Eutypa dieback was rated using a 0–100% scale; (iii) the severity of strangulation was rated using a 0–4 point scale. Images were also taken of each vine for the purpose of measuring plant area index (PAI) using the VitiCanopy App. The goal of the survey was to determine if and to what extent any correlation exists between severity of strangulation and cordon dieback, in addition to Eutypa dieback foliar symptom expression.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.