terclim by ICS banner
IVES 9 IVES Conference Series 9 Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Abstract

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation. Furthermore, VN21 seeds exhibit anomalous development characterized by diminished lignification, substantial anthocyanin accumulation, and an inherent inability to germinate.

Transcriptomic analysis identified alterations in the phenylpropanoid biosynthesis pathway, outstanding the down-regulation of a secoisolariciresinol dehydrogenase and the up-regulation of a pinorenisol-lariciresinol reductase genes in the berry skin of VN21 compared to the reference Tempranillo Tinto clone RJ43 at veraison stage. These genes encode enzymes in the lignans branch of the phenylpropanoids pathway that are compounds that can potentially reduce the risk of certain cancers and cardiovascular diseases. Ultra-performance liquid chromatography (UPHLC) analysis in both berry skin and seed confirmed a distinct phenylpropanoid accumulation pattern between VN21 and RJ43, with an overall reduction in the accumulation of lignan compounds in VN21.

The results obtained not only contribute to understand grapevine berry development and phenolic composition but also present opportunities for targeted breeding strategies aimed at enhancing desirable traits for wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Yolanda Ferradás1,2*, Carolina Royo1, Silvia Yuste1, Pablo Carbonell-Bejerano1, Nuria Mauri1,3, Javier Ibáñez1, María José Motilva1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. De Burgos Km. 6, 26007 Logroño, Spain
2 Current address: Facultade de Bioloxía, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
3 Current address: Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

somatic variation, lignans, berry color, UPHLC, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).