terclim by ICS banner
IVES 9 IVES Conference Series 9 Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Abstract

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation. Furthermore, VN21 seeds exhibit anomalous development characterized by diminished lignification, substantial anthocyanin accumulation, and an inherent inability to germinate.

Transcriptomic analysis identified alterations in the phenylpropanoid biosynthesis pathway, outstanding the down-regulation of a secoisolariciresinol dehydrogenase and the up-regulation of a pinorenisol-lariciresinol reductase genes in the berry skin of VN21 compared to the reference Tempranillo Tinto clone RJ43 at veraison stage. These genes encode enzymes in the lignans branch of the phenylpropanoids pathway that are compounds that can potentially reduce the risk of certain cancers and cardiovascular diseases. Ultra-performance liquid chromatography (UPHLC) analysis in both berry skin and seed confirmed a distinct phenylpropanoid accumulation pattern between VN21 and RJ43, with an overall reduction in the accumulation of lignan compounds in VN21.

The results obtained not only contribute to understand grapevine berry development and phenolic composition but also present opportunities for targeted breeding strategies aimed at enhancing desirable traits for wine production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Yolanda Ferradás1,2*, Carolina Royo1, Silvia Yuste1, Pablo Carbonell-Bejerano1, Nuria Mauri1,3, Javier Ibáñez1, María José Motilva1, José Miguel Martínez-Zapater1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. De Burgos Km. 6, 26007 Logroño, Spain
2 Current address: Facultade de Bioloxía, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
3 Current address: Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

somatic variation, lignans, berry color, UPHLC, RNA-seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Callinikos: the new white table grapeseedless variety for biological produce

This paper presents is the create, the study and amplographic description the new seedless grape variety «Callinicos» was created by P. Zamanidis at the Athens Vine Department

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.