Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Variability of Tempranillo grape quality within the Ribera del Duero do (Spain) and relationships with climatic characteristics

Variability of Tempranillo grape quality within the Ribera del Duero do (Spain) and relationships with climatic characteristics

Abstract

The aim of this research was to evaluate the variability of ripening characteristics of the Tempranillo variety within the Ribera del Duero Designation of Origin (Spain) and it relationships with soil characteristics. This area covers approximately 115 km along the Duero River with elevations from about 700 m to more than 1300 m a.s.l. The climate is temperate with dry or temperate summers in the western portion of the DO area and temperate with a dry summer season in the eastern portion of the DO area. The mean annual temperature ranges between 10.2 and 12.0°C, with mean maximum temperatures around 18.4°C and mean minimum temperatures ranging between 4.5 and 5.0°C. The mean annual precipitation ranges between 413 and 519 mm with the main rainfall periods in April-May and October-November-December.

The main soil types in the Ribera del Duero area are Calcaric Cambisol, Calcic Luvisol, Calcaric Fluvisol, Lithic Leptosol and Calcaric Regosol. The analysis includes the information recorded during the period 2003-2013 in 26 plots throughout the Ribera del Duero DO for parameters such as berry weight (g), sugar content (°Baumé), titratable acidity (AcT) and malic (AcM) acid (gL-1), total (AntT) and extractable (AntE) anthocyanins (mgL-1) and the color index (CI) (in absorbance units). Despite the high variability driven by year to year in climate characteristics, it was possible to indentify the soil and plot characteristics that affect ripening characteristics within the Ribera del Duero. The highest acidity values in grapes were recorded in soils with slightly higher clay and organic matter contents. These plots were located above the river terraces. Additionally, the highest anthocyanins concentrations were also found in plots with the highest organic matter content and with slightly lower soil pH. The effect was greater in the wet years and in those with intermediate characteristics.

The highest anthocyanins and color index values were found in the plots located at lower elevations on the river terraces, while the lower values were recorded in vineyards located on the hillslopes at higher elevation. The results were highly dependent on wet or dry conditions. In dry years high clay and organic matter content gave rise to greater anthocyanin concentrations while in wet years the relationships were the opposite.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Maria Concepción RAMOS (1), Gregory V. JONES (2), Jesús YUSTE (3)

(1) Department of Environment and Soil Science, University of Lleida-Agrotecnio, Avda. Rovira Roure 191, Lleida, Spain
(2) Department of Environmental Science and Policy, Southern Oregon University, Ashland, Oregon, USA
(3) Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain

Contact the author

Keywords

viticulture, enology, terroir, acidity, berry weight, anthocyanins, clay content, elevation, hillslopes, organic matter content, river terraces

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

LC-MS based metabolomics discriminates premium from varietal chilean Cabernet Sauvignon cv. Wines

Aim of the study was to investigate the metabolomic differences between Chilean Cabernet Sauvignon wines, divided according to their quality in two main groups: “Varietal” and “Premium”, and to point out metabolites tentative markers of their chemical signature and sensorial quality. Initially, 150 (50 x 3 biological replicates) experimental wines were produced by the same semi-industrial process, which covered 8 different Chilean valleys. The wine classification made by experts, divided the wines into two major groups (“Varietal” and “Premium”) and four subgroups (two for each major group). All the samples were analyzed according to a robust LC-MS based untargeted work-flow (Arapitsas et al 2018), and the proposed minimum reporting standards for chemical analysis of the Metabolomics Standards Initiative (Sumner et al 2007)

Microwaves, an auxiliary tool to improve red wine quality in warm climates

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST).