WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Abstract

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

From four Saccharomyces cerevisiae strains we obtain four MP pools: an enological strain LMD47 (presenting high levels of N-glycosylation and O-Mannosylation), a wild-type BY4742 strain (used as reference), and its mutants ΔMnn4 (with no mannosyl-phosphorylation) and ΔMnn2 (with a linear N-glycosylation backbone). The extraction method applied, with the exclusive enzymatic activity of Endo-β-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym), preserved the indigenous structure of mannoproteins to their utmost extent. Characterizations of the pools confirmed differences among the polysaccharide moieties of the four MPs regarding charge, mannose/glucose ratio, and branching degrees but no differences between their protein moieties.

The formation and evolution of colloidal aggregates due to interactions between MPs and ST at different concentrations were evaluated through Dynamic Light Scattering (DLS), while the number of colloidal aggregates formed and the particle size distribution were assessed by Nanoparticle Tracking Analysis (NTA). The possible differences in the mechanisms of interaction among the four kinds of mannoproteins were analyzed through Isothermal Titration Calorimetry (ITC).

DLS and NTA experiments indicated an immediate formation of colloidal aggregates, in which the final particle size and concentration were dependent on the ST/MP ratio. Whenever the latter was extremely high, a very progressive flocculation related to a reversible aggregation occurred. The kinetics of this instability phenomenon was dependent on the polysaccharide structure of MPs. ITC analysis showed two different kinds of interactions: an intense exothermic one susceptible to temperature, and a much weaker interaction (as for enthalpy release) less thermo-dependent, possibly related to H-bonding and hydrophobic interactions, respectively. 

Neither the absence of mannosyl phosphate groups, the absence of ramifications on the outer chains of the N-glycosylation, nor the protein glycosylation overexpression seem to play a decisive role in those interactions. However, these structural differences affected the stability of MP-ST colloids formed at specific concentrations and slightly changed the enthalpy exchange profiles.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Assunção Bicca, Céline, Poncet-Legrand, Julie, Mekoue Nguela, Thierry, Doco, Aude, Vernhet

Presenting author

Assunção Bicca – Université de Montpellier

Unité Mixte de Recherche Sciences Pour l’OEnologie, Institut Agro, INRAE, Université de Montpellier, Montpellier, France | Lallemand SAS | Unité Mixte de Recherche Sciences Pour l’OEnologie

Contact the author

Keywords

Mannoproteins – Colloidal Stability – Polysaccharide/Polyphenol Interactions – Wine macromolecules

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Zonificación vitícola y aplicación a la D.O. Montilla-Moriles, usando como referencia la variedad ‘Pedro Ximenes’

Se señalaron 28 parcelas, en la zona de D.O. Montilla-Moriles, repartidas por toda la superficie de viñedo, de ellas 12 se localizan en las Zonas de calidad Superior, en los términos municipales de Montilla

Étude de la flore levurienne de différents terroirs alsaciens

L’utilisation de levures sélectionnées est généralement considérée comme le moyen d’éviter les problèmes fermentaires. Néanmoins de nombreux viticulteurs pensent que ces levures sont à l’origine d’une standardisation des vins et militent pour le respect d’une flore indigène (Bourguignon, 1992).

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].