terclim by ICS banner
IVES 9 IVES Conference Series 9 From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Abstract

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.

At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits. At the molecular level, hormonal, osmotic and oxidative metabolisms are involved. Considering all together, adaptation to any constraint appears as a complex property arising from the interaction of these processes.

Based on a review of recent literature related to grapevine and other plants, and some studies performed in our own laboratory, this communication will illustrate the diversity of adaptive responses, how these responses characterize different adaptation strategies and how these strategies can be leveraged to select new genotypes for the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Nathalie Ollat1*, Marina de Miguel Vega1, Clément Saint Cast1, Elisa Marguerit1, Philippe Vivin1, Virginie Lauvergeat1, Cornelis van Leeuwen1, Sarah J. Cookson1, Philippe Gallusci1, Gregory A. Gambetta1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 210 chemin de Leysotte, 33883 Villenave d’Ornon

Contact the author*

Keywords

Vitis spp, hydraulic traits, microbiome, root development, signaling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).