terclim by ICS banner
IVES 9 IVES Conference Series 9 From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Abstract

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.

At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits. At the molecular level, hormonal, osmotic and oxidative metabolisms are involved. Considering all together, adaptation to any constraint appears as a complex property arising from the interaction of these processes.

Based on a review of recent literature related to grapevine and other plants, and some studies performed in our own laboratory, this communication will illustrate the diversity of adaptive responses, how these responses characterize different adaptation strategies and how these strategies can be leveraged to select new genotypes for the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Nathalie Ollat1*, Marina de Miguel Vega1, Clément Saint Cast1, Elisa Marguerit1, Philippe Vivin1, Virginie Lauvergeat1, Cornelis van Leeuwen1, Sarah J. Cookson1, Philippe Gallusci1, Gregory A. Gambetta1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 210 chemin de Leysotte, 33883 Villenave d’Ornon

Contact the author*

Keywords

Vitis spp, hydraulic traits, microbiome, root development, signaling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.

Reusable system for wine bottles: An analysis of acceptance among German wine consumers

Consumer demands for environmentally friendly products, including wine, are constantly increasing.

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.