terclim by ICS banner
IVES 9 IVES Conference Series 9 From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Abstract

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.

At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits. At the molecular level, hormonal, osmotic and oxidative metabolisms are involved. Considering all together, adaptation to any constraint appears as a complex property arising from the interaction of these processes.

Based on a review of recent literature related to grapevine and other plants, and some studies performed in our own laboratory, this communication will illustrate the diversity of adaptive responses, how these responses characterize different adaptation strategies and how these strategies can be leveraged to select new genotypes for the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Nathalie Ollat1*, Marina de Miguel Vega1, Clément Saint Cast1, Elisa Marguerit1, Philippe Vivin1, Virginie Lauvergeat1, Cornelis van Leeuwen1, Sarah J. Cookson1, Philippe Gallusci1, Gregory A. Gambetta1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 210 chemin de Leysotte, 33883 Villenave d’Ornon

Contact the author*

Keywords

Vitis spp, hydraulic traits, microbiome, root development, signaling

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Grape seed flavanols extraction and mechanical-acoustic properties as influenced by maceration time and ethanol content

AIM: Grape flavanols are involved in wine quality markers such as in-mouth sensations and colour stability.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Determining sub-appellations in Ontario’s wine regions

Vintners Quality Alliance (VQA) Ontario, (Alliance de qualité Vintners) est responsable de l’administration et de l’imposition des normes en liaison avec la qualité du vin, l’appellation d’origine, les variétés de raisin et les méthodes de production. Des vins produits selon les règlements de VQA sont actuellement étiquetés de trois distinctes mais larges régions d’appellation