terclim by ICS banner
IVES 9 IVES Conference Series 9 Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Abstract

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished. We observed a pronounced acidification of the xylem sap pH, coupled with a rise in the concentration of soluble sugars, during the recovery phases following both types of water stress. Nevertheless, in plants subjected to PD, pH acidification initiated as early as the more severe stages of stress. The reduction in Non-Structural Carbohydrates (NSC) observed in both leaf and wood tissues during the recovery phase suggests that sugar reserves were likely utilized to facilitate recovery fulfilment. In plants exposed to SD, the intense and abrupt increase in ABA was likely the primary response strategy to stress. The plants favored a protective strategy aimed at minimizing damage caused by sudden stress. Conversely, under PD conditions, the plants exhibited greater acclimatization, implementing an alternative response strategy that encompassed osmoregulation mechanisms triggered by pH acidification.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Cristina Morabito1*, Jessica Orozco2, Maciej Zwieniecki2, Francesca Secchi1

1 Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Italy)
2 Department of Plant Sciences, University of California Davis, One Shields Avenue, 95616 Davis (CA), USA3 Affliliation

Contact the author*

Keywords

pH, xylem sap, drought, recovery, soluble sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Harnessing biodiversity to improve grapevine rootstock adaptation to drought

Drought is one of the most challenging threats for viticulture because of its impact on reducing yield and on the composition of grapes.

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.