terclim by ICS banner
IVES 9 IVES Conference Series 9 Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Abstract

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished. We observed a pronounced acidification of the xylem sap pH, coupled with a rise in the concentration of soluble sugars, during the recovery phases following both types of water stress. Nevertheless, in plants subjected to PD, pH acidification initiated as early as the more severe stages of stress. The reduction in Non-Structural Carbohydrates (NSC) observed in both leaf and wood tissues during the recovery phase suggests that sugar reserves were likely utilized to facilitate recovery fulfilment. In plants exposed to SD, the intense and abrupt increase in ABA was likely the primary response strategy to stress. The plants favored a protective strategy aimed at minimizing damage caused by sudden stress. Conversely, under PD conditions, the plants exhibited greater acclimatization, implementing an alternative response strategy that encompassed osmoregulation mechanisms triggered by pH acidification.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Cristina Morabito1*, Jessica Orozco2, Maciej Zwieniecki2, Francesca Secchi1

1 Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Italy)
2 Department of Plant Sciences, University of California Davis, One Shields Avenue, 95616 Davis (CA), USA3 Affliliation

Contact the author*

Keywords

pH, xylem sap, drought, recovery, soluble sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of cultivar and its drought tolerance on soil microbiome

Soil microbiome plays a crucial role in plant health and resilience, particularly under abiotic stress conditions such as drought.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.

Untangling belowground response of grapevines to cover crop competition

Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production.

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.