terclim by ICS banner
IVES 9 IVES Conference Series 9 Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Abstract

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished. We observed a pronounced acidification of the xylem sap pH, coupled with a rise in the concentration of soluble sugars, during the recovery phases following both types of water stress. Nevertheless, in plants subjected to PD, pH acidification initiated as early as the more severe stages of stress. The reduction in Non-Structural Carbohydrates (NSC) observed in both leaf and wood tissues during the recovery phase suggests that sugar reserves were likely utilized to facilitate recovery fulfilment. In plants exposed to SD, the intense and abrupt increase in ABA was likely the primary response strategy to stress. The plants favored a protective strategy aimed at minimizing damage caused by sudden stress. Conversely, under PD conditions, the plants exhibited greater acclimatization, implementing an alternative response strategy that encompassed osmoregulation mechanisms triggered by pH acidification.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Cristina Morabito1*, Jessica Orozco2, Maciej Zwieniecki2, Francesca Secchi1

1 Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Italy)
2 Department of Plant Sciences, University of California Davis, One Shields Avenue, 95616 Davis (CA), USA3 Affliliation

Contact the author*

Keywords

pH, xylem sap, drought, recovery, soluble sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Déterminisme de l’effet terroir: influence de la surface foliaire primaire de la vigne en début de cycle sur le potentiel vendange

ln the Mid-Loire Valley, in France, for the fast twenty years a network of experimental plots has been used to analyse the terroir effect on the behaviour of the Cabernet franc variety of grape. The study of the primary leaf area (SFI) for several vintages shows that it differs greatly from one terroir to another.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Sensory differences of Pinot noir wines from willamette valley subregions

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors.