terclim by ICS banner
IVES 9 IVES Conference Series 9 Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Abstract

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished. We observed a pronounced acidification of the xylem sap pH, coupled with a rise in the concentration of soluble sugars, during the recovery phases following both types of water stress. Nevertheless, in plants subjected to PD, pH acidification initiated as early as the more severe stages of stress. The reduction in Non-Structural Carbohydrates (NSC) observed in both leaf and wood tissues during the recovery phase suggests that sugar reserves were likely utilized to facilitate recovery fulfilment. In plants exposed to SD, the intense and abrupt increase in ABA was likely the primary response strategy to stress. The plants favored a protective strategy aimed at minimizing damage caused by sudden stress. Conversely, under PD conditions, the plants exhibited greater acclimatization, implementing an alternative response strategy that encompassed osmoregulation mechanisms triggered by pH acidification.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Cristina Morabito1*, Jessica Orozco2, Maciej Zwieniecki2, Francesca Secchi1

1 Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Italy)
2 Department of Plant Sciences, University of California Davis, One Shields Avenue, 95616 Davis (CA), USA3 Affliliation

Contact the author*

Keywords

pH, xylem sap, drought, recovery, soluble sugar

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

For the chemical characterization of Aszu wines from Tokaj region our aim is to develop a biochemical method which is related to Botrytis cinerea.

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.