Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Abstract

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études. La délimitation de l’unité de terroir dite «fonctionnelle» se distingue de celles issues de diverses méthodes de cartographie informatisée, parmi lesquelles la méthode dite de «zonage des terroirs par l’analyse spatiale» objet de cette communication. Fondé sur l’analyse géomorphologique et pédologique du milieu physique en unités de pédopaysage, puis sur des regroupements de ces unités à l’aide de classifications statistiques, le zonage des terroirs par l’analyse spatiale repose sur l’interprétation de données de terrain et de photographies aériennes, ainsi que sur des traitements numériques d’images satellitales. Il a été mis en œuvre pour le vignoble AOC des Côtes-du-Rhône méridionales, couvrant 210 800 ha de territoires communaux, dont 60 000 plantés en vigne. Au moins 60 % des unités de terroir disposant de données de maturité 1982-1998 du Grenache et de la Syrah sont respectivement validées au moyen de l’analyse fréquentielle de ces données.

Spatial approaches on terroir as a geographical entity (“zoning”) are being developed, together with the steady rising of GIS data handling. Studies greatly differ in methods, objectives and the selected criteria. The delineation of so-called “functional” units has to be distinguished from varied digital mapping methods, such as the so-called “zoning of terroirs based on spatial analysis”, which is presented in this paper. Relying on the soil and landform analysis of the geographic space into soil-landscape units, which are clustered using statistical classifications, such zoning uses ground observations, aerial photograph examination, and also digital processing of satellite images. It was carried out in the Southern Côtes-du-Rhône Appelation vineyard, over 210 800 hectares, 60 000 of which planted with vines. At least 60 % of those of the modelled terroir units having harvest data are validated as for their viticultural response, across successive harvests of Grenache or Shiraz grapes in quality-clusters over the 1982-1998 vintages.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E.VAUDOUR (1), M.C. GIRARD (1), F. FABRE (2)

(1) Institut National Agronomique Paris-Grignon (INA-PG) -UFR AGER/DMOS -Centre de Grignon BP01 78850 Thiverval-Grignon-France
(2) Syndicat des Vignerons des Côtes-du-Rhône-Maison des Vins -6, rue des Trois Faucons -84000 Avignon -France

Contact the author

Keywords

zonage viticole, terroir, analyse spatiale géomorpho-pédologique
viticultural zoning, terroir, soil and landform spatial analysis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Soil and climate of 3 vineyards have been characterised in order to determine their influence on grape quality. These vineyards are located in Conca de Barberà (Catalonia, NE Spain) and belong to Cabernet sauvignon and Grenache noir cultivars. All 3 plots are very close, so only interannual climatic data of the nearest meteorological station have been considered.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity.