terclim by ICS banner
IVES 9 IVES Conference Series 9 Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Abstract

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform. To assess traits related to carbon and water functioning on the whole panel, we deployed an original approach where 120 leaves of 40 genotypes were phenotyped combining low-throughput devices to precisely measure ecophysiological traits, as well as innovative, portable high-throughput devices to measure near infrared reflectance, porometry and chlorophyll fluorescence. These data allowed us to build cutting-edge statistical models, such as multiblock models, which jointly use data from different devices, for predicting ecophysiological traits. Models for predicting photosynthesis and transpiration were accurate enough to be applied on the entire panel, only measured with high-throughput devices. Such predictions highlighted a wide range of genotypic variability and contrasting responses to water deficit. Multi-traits and Multi-Environment Genome Wide Association Studies further revealed genomic regions associated with these responses, and underlying candidate genes are being investigated. 

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Eva Coindre1,2*, Laurine Chir2, Maxime Ryckewaert3, Romain Boulord2, Mélyne Falcon2, Thomas Laisné2, Gaëlle Rolland2, Maëlle Lis2, Llorenç Cabrera-Bosquet2, Agnès Doligez1, Thierry Simonneau2, Benoît Pallas2, Aude Coupel-Ledru2, Vincent Segura1,4

1 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
2 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
3 Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 UMT Geno-Vigne, IFV, INRAE, Montpellier, France

Contact the author*

Keywords

water deficit, high throughput phenotyping, prediction, photosynthesis/transpiration coupling, GWAS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed.