terclim by ICS banner
IVES 9 IVES Conference Series 9 Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Abstract

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform. To assess traits related to carbon and water functioning on the whole panel, we deployed an original approach where 120 leaves of 40 genotypes were phenotyped combining low-throughput devices to precisely measure ecophysiological traits, as well as innovative, portable high-throughput devices to measure near infrared reflectance, porometry and chlorophyll fluorescence. These data allowed us to build cutting-edge statistical models, such as multiblock models, which jointly use data from different devices, for predicting ecophysiological traits. Models for predicting photosynthesis and transpiration were accurate enough to be applied on the entire panel, only measured with high-throughput devices. Such predictions highlighted a wide range of genotypic variability and contrasting responses to water deficit. Multi-traits and Multi-Environment Genome Wide Association Studies further revealed genomic regions associated with these responses, and underlying candidate genes are being investigated. 

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Eva Coindre1,2*, Laurine Chir2, Maxime Ryckewaert3, Romain Boulord2, Mélyne Falcon2, Thomas Laisné2, Gaëlle Rolland2, Maëlle Lis2, Llorenç Cabrera-Bosquet2, Agnès Doligez1, Thierry Simonneau2, Benoît Pallas2, Aude Coupel-Ledru2, Vincent Segura1,4

1 AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
2 LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
3 Inria, LIRMM, Univ Montpellier, CNRS, Montpellier, France
4 UMT Geno-Vigne, IFV, INRAE, Montpellier, France

Contact the author*

Keywords

water deficit, high throughput phenotyping, prediction, photosynthesis/transpiration coupling, GWAS

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring resilience and competitiveness of wine estates in Languedoc-Roussillon in the recent past: a multi-level perspective

The Languedoc-Roussillon wineries are facing a decline in wine yields particularly PGI yields due to many factors. Climate change is just ones, but is expected to increase in the future. There is also structurally a large heterogeneity of yield profiles among terroirs, varieties and strategies. This work investigates the link between yield, competitiveness and resilience to explore how resilient winegrowers have been in the recent past. To this end two approaches have been combined; (i) an accountancy database analysis at estate scale and (ii) municipality level competitiveness analysis. A new resilience indicator that characterizes the capacity of an estate to absorb yield variation is also defined. The FADN database between 2000 and 2018 of ex-Languedoc-Roussillon (France) and other data are used to analyse the current situation and the past evolution of competitiveness and resilience by type of estate (type of farm: PGI and/or PDO & type of commercialization: bulk and/or bottles). The net margin, which defines competitiveness, is not correlated to yield for all types but depends on the type of commercialization and the level of specialisation. The resilience indicator shows that the net margin of estates specialized in PGI is particularly sensitive to yield declines. We also show that price evolutions seem to compensate the effect of yield losses for the majority of types. Municipality scale analysis shows the links between local pedoclimate, yield, commercialization strategies and price. Overlapping a PDO with a PGI does not always increase a municipality’s PGI competitiveness. It is difficult to make links between causes and effects due to the complexity of the wine production system. Production diversification may be a solution. Resorting to the two level of analysis helps resolving the data gap that is necessary to explore the links between yield and economic performance of the wine estates in the long term.

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].