terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Abstract

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88). In experiment 2, analogue plants were submitted to a progressive water deficit while assessing vine water status and physiological behavior. In addition, the anatomical characteristics of leaf and stem xylem tissues were analyzed. Results of experiment 1 revealed that the embolism process started from the leaf to the root, showing hydraulic segmentation. Significant differences were found in the ψ at different P stages in the two combinations. However, neither significant rootstock effects were found on any of the parameters derived from pressure-volume curves, nor on hydraulic segmentation. Nevertheless, hydraulic segmentation seems to be correlated with the size of xylem diameter. In experiment 2, rootstock xylem anatomy was found to be related the scion behavior, influencing plant hydraulic conductivity and net photosynthesis in both well-watered and water-stressed conditions. Further studies are needed to confirm these results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

José M. Escalona1,2*, Luis Flor1,2, Guillermo Toro4, Antoni Sabater2, Marc Carriquí1,3 Hipólito Medrano1,2 and Ignacio Buesa5

Research Group of Plant Biology under Mediterranean conditions. University of Balearic Islands (PlantMed)
2 Agro-Environmental Sciences and Water Economics Institute. University of Balearic Islands (INAGEA-UIB)
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de La Coruña km. 7.7. 28040 Madrid, España.
4 Centro de Estudios Avanzados en Fruticultura (CEAF). Las Parcelas 882, Rancagua, Chile
Centor de investigaciones sobre desertificación (CIDE-CSIC-UV-GVA). Moncada, Valencia, España

Contact the author*

Keywords

Cavitation, xylem vessels, gas exchange, drought, recovery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Cumulative effect (6 years) of deficit irrigation in two important cultivars of Douro region, Portugal

Numerous studies have demonstrated the importance of irrigation in improving the grape yield and quality in areas with arid and semiarid climates, particularly in the context of ongoing climate changes. However, the introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies in this region. The present study aimed to evaluate how different irrigation deficits for 6 years would influence production and must quality in Touriga Francesa (TF) and Touriga Nacional (TN) varieties.