terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Abstract

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88). In experiment 2, analogue plants were submitted to a progressive water deficit while assessing vine water status and physiological behavior. In addition, the anatomical characteristics of leaf and stem xylem tissues were analyzed. Results of experiment 1 revealed that the embolism process started from the leaf to the root, showing hydraulic segmentation. Significant differences were found in the ψ at different P stages in the two combinations. However, neither significant rootstock effects were found on any of the parameters derived from pressure-volume curves, nor on hydraulic segmentation. Nevertheless, hydraulic segmentation seems to be correlated with the size of xylem diameter. In experiment 2, rootstock xylem anatomy was found to be related the scion behavior, influencing plant hydraulic conductivity and net photosynthesis in both well-watered and water-stressed conditions. Further studies are needed to confirm these results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

José M. Escalona1,2*, Luis Flor1,2, Guillermo Toro4, Antoni Sabater2, Marc Carriquí1,3 Hipólito Medrano1,2 and Ignacio Buesa5

Research Group of Plant Biology under Mediterranean conditions. University of Balearic Islands (PlantMed)
2 Agro-Environmental Sciences and Water Economics Institute. University of Balearic Islands (INAGEA-UIB)
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de La Coruña km. 7.7. 28040 Madrid, España.
4 Centro de Estudios Avanzados en Fruticultura (CEAF). Las Parcelas 882, Rancagua, Chile
Centor de investigaciones sobre desertificación (CIDE-CSIC-UV-GVA). Moncada, Valencia, España

Contact the author*

Keywords

Cavitation, xylem vessels, gas exchange, drought, recovery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Influence of pre-fermentative steps on varietal thiol precursors

The content of 3-sulfanyl-1-hexanol and its acetate ester in wine is affected by a number of factors, including the concentration of its precursors S-3-(hexan-1-ol)-L-glutathione (G-3SH),

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).