terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Abstract

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88). In experiment 2, analogue plants were submitted to a progressive water deficit while assessing vine water status and physiological behavior. In addition, the anatomical characteristics of leaf and stem xylem tissues were analyzed. Results of experiment 1 revealed that the embolism process started from the leaf to the root, showing hydraulic segmentation. Significant differences were found in the ψ at different P stages in the two combinations. However, neither significant rootstock effects were found on any of the parameters derived from pressure-volume curves, nor on hydraulic segmentation. Nevertheless, hydraulic segmentation seems to be correlated with the size of xylem diameter. In experiment 2, rootstock xylem anatomy was found to be related the scion behavior, influencing plant hydraulic conductivity and net photosynthesis in both well-watered and water-stressed conditions. Further studies are needed to confirm these results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

José M. Escalona1,2*, Luis Flor1,2, Guillermo Toro4, Antoni Sabater2, Marc Carriquí1,3 Hipólito Medrano1,2 and Ignacio Buesa5

Research Group of Plant Biology under Mediterranean conditions. University of Balearic Islands (PlantMed)
2 Agro-Environmental Sciences and Water Economics Institute. University of Balearic Islands (INAGEA-UIB)
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de La Coruña km. 7.7. 28040 Madrid, España.
4 Centro de Estudios Avanzados en Fruticultura (CEAF). Las Parcelas 882, Rancagua, Chile
Centor de investigaciones sobre desertificación (CIDE-CSIC-UV-GVA). Moncada, Valencia, España

Contact the author*

Keywords

Cavitation, xylem vessels, gas exchange, drought, recovery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.