terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Abstract

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88). In experiment 2, analogue plants were submitted to a progressive water deficit while assessing vine water status and physiological behavior. In addition, the anatomical characteristics of leaf and stem xylem tissues were analyzed. Results of experiment 1 revealed that the embolism process started from the leaf to the root, showing hydraulic segmentation. Significant differences were found in the ψ at different P stages in the two combinations. However, neither significant rootstock effects were found on any of the parameters derived from pressure-volume curves, nor on hydraulic segmentation. Nevertheless, hydraulic segmentation seems to be correlated with the size of xylem diameter. In experiment 2, rootstock xylem anatomy was found to be related the scion behavior, influencing plant hydraulic conductivity and net photosynthesis in both well-watered and water-stressed conditions. Further studies are needed to confirm these results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

José M. Escalona1,2*, Luis Flor1,2, Guillermo Toro4, Antoni Sabater2, Marc Carriquí1,3 Hipólito Medrano1,2 and Ignacio Buesa5

Research Group of Plant Biology under Mediterranean conditions. University of Balearic Islands (PlantMed)
2 Agro-Environmental Sciences and Water Economics Institute. University of Balearic Islands (INAGEA-UIB)
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de La Coruña km. 7.7. 28040 Madrid, España.
4 Centro de Estudios Avanzados en Fruticultura (CEAF). Las Parcelas 882, Rancagua, Chile
Centor de investigaciones sobre desertificación (CIDE-CSIC-UV-GVA). Moncada, Valencia, España

Contact the author*

Keywords

Cavitation, xylem vessels, gas exchange, drought, recovery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.

Does wine expertise influence semantic categorization of wine odors?

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors.

Studio preliminare sulla microzonazione Bioclimatica condotto in un’area viticola collinare

La caratterizzazione bioclimatica del territorio rappresenta un elemento sempre più impor­tante per il miglioramento dell’ attività agricola. La conoscenza degli andamenti assunti dai parametri meteorologici puà consentire di individuare le peculiarità dei singoli appezzamenti aziendali, ottimizzando le scelte sia in termini tattici (esecuzione dei più opportuni interventi colturali) che strategici (scelta delle specie o varietà più idonee a valorizzare ciascun am­biente).