terclim by ICS banner
IVES 9 IVES Conference Series 9 Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Abstract

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88). In experiment 2, analogue plants were submitted to a progressive water deficit while assessing vine water status and physiological behavior. In addition, the anatomical characteristics of leaf and stem xylem tissues were analyzed. Results of experiment 1 revealed that the embolism process started from the leaf to the root, showing hydraulic segmentation. Significant differences were found in the ψ at different P stages in the two combinations. However, neither significant rootstock effects were found on any of the parameters derived from pressure-volume curves, nor on hydraulic segmentation. Nevertheless, hydraulic segmentation seems to be correlated with the size of xylem diameter. In experiment 2, rootstock xylem anatomy was found to be related the scion behavior, influencing plant hydraulic conductivity and net photosynthesis in both well-watered and water-stressed conditions. Further studies are needed to confirm these results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

José M. Escalona1,2*, Luis Flor1,2, Guillermo Toro4, Antoni Sabater2, Marc Carriquí1,3 Hipólito Medrano1,2 and Ignacio Buesa5

Research Group of Plant Biology under Mediterranean conditions. University of Balearic Islands (PlantMed)
2 Agro-Environmental Sciences and Water Economics Institute. University of Balearic Islands (INAGEA-UIB)
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de La Coruña km. 7.7. 28040 Madrid, España.
4 Centro de Estudios Avanzados en Fruticultura (CEAF). Las Parcelas 882, Rancagua, Chile
Centor de investigaciones sobre desertificación (CIDE-CSIC-UV-GVA). Moncada, Valencia, España

Contact the author*

Keywords

Cavitation, xylem vessels, gas exchange, drought, recovery

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.