WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

FIRST APPLICATION OF LACHANCEA THERMOTOLERANS IN THE FERMENTATION OF “VINO SANTO” AS BIOLOGICHAL ACIDIFIER.

Abstract

The exploitation of secondary metabolic pathways of non-Saccharomyces yeasts is a promising approach to protect traditional wines from the ongoing climate change, which can alter their peculiar features by modifying the chemical composition of grape musts. In this regard, an interesting example is the sequential inoculum of Lachancea thermotolerans and Saccharomyces. Cerevisiae. The aim of the sequential inoculum is to increase titratable acidity by lactic acid accumulation, to lower pH and to reduce the alcohol and acetic acid content in wine.

In this work, grapes of Italian’s variety Garganega were dried and crushed according to the traditional winemaking protocol to produce Vino Santo, a sweet wine produced from withered grapes in different wine appellations in Italy. The performances of a traditional inoculum of S. cerevisiae were compared to that of a sequential inoculum with a commercial strain of L. thermotolerans followed by S. cerevisiae when the 30% of the alcoholic fermentation was reached. Furthermore, different nitrogen supplementation protocols (with yeast autolysates and diammonium phosphate) were tested, considering that the lack of nutrients is one of the main criticism in the fermentation of must coming from dried grapes.

Results demonstrated that L. thermotolerans is capable to acidify wines in the fermentation of must at high osmotic pressure (~400 g/L of reducing sugars), in particular during the first stages of winemaking, thus contributing to the microbial control. The sensory evaluation performed by a panel of eleven winemakers showed that L. thermotolerans balanced the mouthfeel of wines with a high sugar residue. The nature and timing of the nutritional supplementation also affected the pH and the sensory evaluation of wines. This winemaking practice is crucial to regulate yeast metabolism, managing the competition among different species that modify the quality perception of wines.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Raffaele Guzzon, Tomas Roman, Adelaide Gallo, Mario Malacarne

Fondazione Edmund Mach

Contact the author

Keywords

Lachancea thermotolerans – Non-Saccharomyces yeast – Vino Santo – Sweet wine – Biological acidification

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS). RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail.