terclim by ICS banner
IVES 9 IVES Conference Series 9 Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Abstract

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.
To determine the impact of this stomatal conduction response to eCO2 on whole vine water use, sap-flow gauges were installed for subsequent seasons (2016/2017), with complementary measurements of leaf gas exchange, pre-dawn leaf water potential (Ψpd), soil water content and recording of weather data. Furthermore, a vineyard water balance model was used to test the implications of the eCO2 response, and possible explanations. Net assimilation and intrinsic water use efficiency values were higher for Cabernet Sauvignon under eCO2 conditions, likewise transpiration rates (E) and stomatal conductance. Results were supported through whole vine transpiration measurements, pointing to a higher water use of young vines under eCO2. The difference in daily vine water use between both CO2 treatments was higher on days of high evaporative demand. Further, pre-dawn leaf water potentials were slightly lower under aCO2, indicating a potentially lower risk for drought stress for young vines under eCO2.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Yvette Wohlfahrt1*, Jason Smith1,2, Marco Hofmann1

1 Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
2 Current address: Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia

Contact the author*

Keywords

grapevine, climate change, carbon dioxide, water status, gas exchange, transpiration model

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characteristics of some Montefalco Sagrantino vineyards through polyphenolic components

Characteristics related to the climate and the soil of Montefalco in the centre of Italy have been defined in order to evaluate their influence on the red cv.

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Mapping grape composition in the field using VIS/SWIR hyperspectral cameras mounted on a UTV

Assessing grape composition is critical in vineyard management. It is required to decide the harvest date and to optimize cultural practices toward the achievement of production goals. The grape composition is variable in time and space, as it is affected by the ripening process and depends on soil and climate conditions.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.