terclim by ICS banner
IVES 9 IVES Conference Series 9 Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Abstract

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.
To determine the impact of this stomatal conduction response to eCO2 on whole vine water use, sap-flow gauges were installed for subsequent seasons (2016/2017), with complementary measurements of leaf gas exchange, pre-dawn leaf water potential (Ψpd), soil water content and recording of weather data. Furthermore, a vineyard water balance model was used to test the implications of the eCO2 response, and possible explanations. Net assimilation and intrinsic water use efficiency values were higher for Cabernet Sauvignon under eCO2 conditions, likewise transpiration rates (E) and stomatal conductance. Results were supported through whole vine transpiration measurements, pointing to a higher water use of young vines under eCO2. The difference in daily vine water use between both CO2 treatments was higher on days of high evaporative demand. Further, pre-dawn leaf water potentials were slightly lower under aCO2, indicating a potentially lower risk for drought stress for young vines under eCO2.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Yvette Wohlfahrt1*, Jason Smith1,2, Marco Hofmann1

1 Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
2 Current address: Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia

Contact the author*

Keywords

grapevine, climate change, carbon dioxide, water status, gas exchange, transpiration model

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.

Clustering wine aromatic composition of Vitis vinifera grapevine varieties

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Amongst several changes in viticultural practices, replacing some of the planting material (i.e clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity.