terclim by ICS banner
IVES 9 IVES Conference Series 9 Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Abstract

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.
To determine the impact of this stomatal conduction response to eCO2 on whole vine water use, sap-flow gauges were installed for subsequent seasons (2016/2017), with complementary measurements of leaf gas exchange, pre-dawn leaf water potential (Ψpd), soil water content and recording of weather data. Furthermore, a vineyard water balance model was used to test the implications of the eCO2 response, and possible explanations. Net assimilation and intrinsic water use efficiency values were higher for Cabernet Sauvignon under eCO2 conditions, likewise transpiration rates (E) and stomatal conductance. Results were supported through whole vine transpiration measurements, pointing to a higher water use of young vines under eCO2. The difference in daily vine water use between both CO2 treatments was higher on days of high evaporative demand. Further, pre-dawn leaf water potentials were slightly lower under aCO2, indicating a potentially lower risk for drought stress for young vines under eCO2.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Yvette Wohlfahrt1*, Jason Smith1,2, Marco Hofmann1

1 Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
2 Current address: Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Leeds Parade, Orange, NSW 2800, Australia

Contact the author*

Keywords

grapevine, climate change, carbon dioxide, water status, gas exchange, transpiration model

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Grapevine Shiraz disease-associated viruses lead to yield losses by altering transcription of genes

Context and Purpose of Study. Grapevine Shiraz disease (SD), which is associated with Grapevine Virus A (GVA), is one of the highly destructive diseases affecting Australian and South African vineyards.

Il ruolo dei comuni nella gestione del territorio e nella tutela dei vitigni autoctoni di qualita’

Questo simposio organizzato dall ‘Associazione nazionale Città del Vino, che mi onoro di presiedere, è per me motivo di particolare soddisfazione perché porta a compimento parte di un percorso iniziato dall’associazione da alcuni anni e che ha un obiettivo apparentemente semplice: sollecitare gli amministratori delle Città del Vino a perseguire con tenacia, tal­volta anche con la necessaria caparbietà, programmi ed interventi che abbiano al centro, sempre, la qualità della vita dei loro territori.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Variability in the content of coarse elements in a viticultural plot in the Graves appellation: relationship with geophysical data

Il a été souvent démontré (Seguin, 1970), que les meilleurs terroirs sont ceux qui présentent pendant la période de maturation du raisin, une régulation et une limitation de l’alimentation hydrique de la vigne. Si on s’intéresse aux facteurs influençant ce régime hydrique, on constate le rôle prépondérant du taux d’éléments grossiers non poreux qui limitent la réserve utile du sol en diminuant le taux de terre fine. De plus, ces éléments grossiers jouent également un rôle au niveau du pédo-climat thermique car leur conductivité thermique et leur chaleur spécifique sont plus élevées que celles de la terre fine. Ainsi le sol se réchauffera et se refroidira plus rapidement (Saini et McLean, 1967), (Gras, 1994).

Chemical and biochemical formation of polysulfides in synthetic and real wines using UHPLC-HRMS

ulfur compounds in wine have been studied for several years due to their impact on wine flavour, but the role of polysulfides is a recent topic. Polysulfides in wine are formed when two sulfhydryl groups oxidize, especially in presence of elemental sulfur or metal catalysts from field treatment residues (Ugliano et al. 2011). These compounds are odourless, but can degrade during storage and affect the wine quality. The mechanism of their formation is still largely unknown but different chemical and biochemical pathways have been suggested. Disulfides from cysteine (Cys) and glutathione (GSH) have been revealed in model wines (Kreitman et al. 2016) and more recently also higher polymerized forms in real wines (Van Leeuwen et al. 2020). Volatile varietal thiols like 3-mercaptohexanol (3MH) and 4-mercaptopentanone (4MMP) – flavour compounds with tropical or fruity notes – could undergo similar reactions, also with Cys and GSH, subsequently losing their flavour property (fate). Even more concerning is the possible release of H2S from polysulfides during storage, leading to undesired off-flavours (Sarrazin et al. 2010).