terclim by ICS banner
IVES 9 IVES Conference Series 9 The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Abstract

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard. Plants from both cultivars grafted in the tolerant rootstock, 110 Richter, underwent different drought stages. For each stage, samples from leaves and roots were analyzed at metabolic, hormonal, physiological and transcriptomic level. The results revealed differences at most levels, increasing the production of osmolytes and antioxidant molecules involved in response to drought stress in Callet. However, hormonal analysis showed similar ABA production in both cultivars, indicating lower sensitivity to ABA in the case of Merlot compared to Callet. Moreover, the transcriptomic analysis revealed a modulation of genes involved in response to ABA and miRNA in leaves and roots of Callet, whereas in Merlot was mostly absent in roots, evidencing a poor cross-talk between Merlot and rootstock and increasing the value of the correct combination scion/rootstock for the vineyard adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Rodriguez-Izquierdo1*, David Carrasco1, María Ángeles Revilla2, Josefina Bota3, Rosa Arroyo-Garcia1

1 Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
2 Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
3 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Illes Balears, Spain

In memoriam of Rosa Arroyo-Garcia.

Contact the author*

Keywords

rootstock, drought, cross-talk, transcriptomics, ABA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.