terclim by ICS banner
IVES 9 IVES Conference Series 9 The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Abstract

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard. Plants from both cultivars grafted in the tolerant rootstock, 110 Richter, underwent different drought stages. For each stage, samples from leaves and roots were analyzed at metabolic, hormonal, physiological and transcriptomic level. The results revealed differences at most levels, increasing the production of osmolytes and antioxidant molecules involved in response to drought stress in Callet. However, hormonal analysis showed similar ABA production in both cultivars, indicating lower sensitivity to ABA in the case of Merlot compared to Callet. Moreover, the transcriptomic analysis revealed a modulation of genes involved in response to ABA and miRNA in leaves and roots of Callet, whereas in Merlot was mostly absent in roots, evidencing a poor cross-talk between Merlot and rootstock and increasing the value of the correct combination scion/rootstock for the vineyard adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Rodriguez-Izquierdo1*, David Carrasco1, María Ángeles Revilla2, Josefina Bota3, Rosa Arroyo-Garcia1

1 Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
2 Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
3 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Illes Balears, Spain

In memoriam of Rosa Arroyo-Garcia.

Contact the author*

Keywords

rootstock, drought, cross-talk, transcriptomics, ABA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Tracking of sulfonated flavanol formation in a model wine during storage

The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.