terclim by ICS banner
IVES 9 IVES Conference Series 9 The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Abstract

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard. Plants from both cultivars grafted in the tolerant rootstock, 110 Richter, underwent different drought stages. For each stage, samples from leaves and roots were analyzed at metabolic, hormonal, physiological and transcriptomic level. The results revealed differences at most levels, increasing the production of osmolytes and antioxidant molecules involved in response to drought stress in Callet. However, hormonal analysis showed similar ABA production in both cultivars, indicating lower sensitivity to ABA in the case of Merlot compared to Callet. Moreover, the transcriptomic analysis revealed a modulation of genes involved in response to ABA and miRNA in leaves and roots of Callet, whereas in Merlot was mostly absent in roots, evidencing a poor cross-talk between Merlot and rootstock and increasing the value of the correct combination scion/rootstock for the vineyard adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Rodriguez-Izquierdo1*, David Carrasco1, María Ángeles Revilla2, Josefina Bota3, Rosa Arroyo-Garcia1

1 Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
2 Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
3 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Illes Balears, Spain

In memoriam of Rosa Arroyo-Garcia.

Contact the author*

Keywords

rootstock, drought, cross-talk, transcriptomics, ABA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Novel approaches and promising perspectives for enhancing grapevine editing and regeneration

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering CRISPR/Cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate. However, this process is inefficient, time-consuming, and only applicable to a few genotypes. To enhance grapevine regeneration efficiency, the expression of developmental and plant growth regulators shows promise in escaping the recalcitrance encountered in traditional tissue culture methods.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Retallack Viticulture EcoVineyards video

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Consumer acceptance of sweet wines produced by stopping fermentation with octanoic and decanoic acids

The use of medium chain fatty acids for arresting the fermentation and producing sweet wines was investigated at industrial level. Doses of 10 mg/l of octanoic or decanoic acid and a combination of 5+5 mg/l octanoic and decanoic acid were used to produce sweet wines of tamaioasa romanească variety in volumes of 3000 l.