terclim by ICS banner
IVES 9 IVES Conference Series 9 The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Abstract

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard. Plants from both cultivars grafted in the tolerant rootstock, 110 Richter, underwent different drought stages. For each stage, samples from leaves and roots were analyzed at metabolic, hormonal, physiological and transcriptomic level. The results revealed differences at most levels, increasing the production of osmolytes and antioxidant molecules involved in response to drought stress in Callet. However, hormonal analysis showed similar ABA production in both cultivars, indicating lower sensitivity to ABA in the case of Merlot compared to Callet. Moreover, the transcriptomic analysis revealed a modulation of genes involved in response to ABA and miRNA in leaves and roots of Callet, whereas in Merlot was mostly absent in roots, evidencing a poor cross-talk between Merlot and rootstock and increasing the value of the correct combination scion/rootstock for the vineyard adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Rodriguez-Izquierdo1*, David Carrasco1, María Ángeles Revilla2, Josefina Bota3, Rosa Arroyo-Garcia1

1 Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
2 Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
3 Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA). Carretera de Valldemossa Km 7.5, 07122 Palma, Illes Balears, Spain

In memoriam of Rosa Arroyo-Garcia.

Contact the author*

Keywords

rootstock, drought, cross-talk, transcriptomics, ABA

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality.

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).