terclim by ICS banner
IVES 9 IVES Conference Series 9 Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Abstract

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.

The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC. The physiological parameters measured included stomatal conductance (gs), photosynthesis (AN), transpiration (E), mid-day (ѰMD), intrinsic water use efficiency (WUEi) and abscisic acid (ABA) concentrations.

The results indicated that water stress treatment significantly affected all physiological parameters throughout the three-day cycle. Interestingly, the rootstocks did not show a significant impact on AN or gs, except for water potential. The rootstock effect on AN and gs was observed during the initial hours of the day on specific days, particularly coinciding with the lowest daytime temperature.

Notably, ABA levels were affected by water stress only on the first day of measurement, at the beginning of the heatwave. However, this effect disappeared on subsequent days (195 and 200) when ABA concentrations reached their highest levels. Surprisingly, the rootstocks did not influence ABA levels.

Our data suggest that, the physiological effects triggered by the rootstocks in grapevine tend to diminish under prolonged extreme events such as heat waves, high temperatures and water scarcity.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

David Labarga1, Andreu Mairata1, Miguel Puelles1, Ignacio Vicente-Diez1, Javier Manzanares1, Elisabet Vaquero1, Alfonso Albacete2, Álvaro Galán1, Alicia Pou1*

1 Instituto de Ciencias de la Vid y del Vino, CSIC, Gobierno de la Rioja, Universidad de La Rioja, 26006 Logroño, Spain
2 Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain

Contact the author*

Keywords

Global warming, drought, plant physiology, phytohormones, vineyard

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Modernizing wine legislation for a resilient and competitive industry: lessons from Republic of Moldova’s legal and policy reforms

The evolution of Republic of Moldova’s wine industry offers a compelling case study in how legal harmonization and institutional reform can catalyze the transformation of a national wine sector.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.