terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Abstract

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (Y), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism. Moreover, both cultivars exhibit a sigmoid decrease in yield as Yleaf declined, highlighting a 50% productivity reduction corresponding to a 50% reduction in stomatal conductance. However, Chardonnay demonstrated higher drought tolerance, achieving more negative Yleaf values during water deficit, with leaf turgor loss occurring at a lower Y threshold. Furthermore, differences in Yleaf between the cultivars stemmed from their distinct drought-coping mechanisms. Chardonnay employed osmotic adjustment to facilitate water movement and maintain turgor, while Sauvignon blanc relied on elastic adjustment to sustain elevated leaf water content. Sensitivity analysis suggests the limited impact of osmotic adjustment on Chardonnay’s Yleaf variability, emphasizing its function as a delayed response to water stress. Conversely, Sauvignon blanc’s higher bulk elastic modulus influences Yleaf fluctuations more prominently, promoting rapid rehydration under water scarcity. These mechanisms determined Yleaf magnitudes, with Sauvignon blanc exhibiting lower stress levels than Chardonnay.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Felipe Suárez-Vega1*, Felipe Torres-Pérez1, Bastián Silva-Gutiérrez1, Benjamín Velázquez-Pizarro1, J. Antonio Alcalde1, Alonso G. Pérez-Donoso1*

1 Departamento de Fruticultura y Enología. Pontificia Universidad Católica de Chile

Contact the author*

Keywords

Grapevine cultivars, water deficit, drought tolerance, osmotic adjustment, bulk elastic modulus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as