terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Abstract

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (Y), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism. Moreover, both cultivars exhibit a sigmoid decrease in yield as Yleaf declined, highlighting a 50% productivity reduction corresponding to a 50% reduction in stomatal conductance. However, Chardonnay demonstrated higher drought tolerance, achieving more negative Yleaf values during water deficit, with leaf turgor loss occurring at a lower Y threshold. Furthermore, differences in Yleaf between the cultivars stemmed from their distinct drought-coping mechanisms. Chardonnay employed osmotic adjustment to facilitate water movement and maintain turgor, while Sauvignon blanc relied on elastic adjustment to sustain elevated leaf water content. Sensitivity analysis suggests the limited impact of osmotic adjustment on Chardonnay’s Yleaf variability, emphasizing its function as a delayed response to water stress. Conversely, Sauvignon blanc’s higher bulk elastic modulus influences Yleaf fluctuations more prominently, promoting rapid rehydration under water scarcity. These mechanisms determined Yleaf magnitudes, with Sauvignon blanc exhibiting lower stress levels than Chardonnay.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Felipe Suárez-Vega1*, Felipe Torres-Pérez1, Bastián Silva-Gutiérrez1, Benjamín Velázquez-Pizarro1, J. Antonio Alcalde1, Alonso G. Pérez-Donoso1*

1 Departamento de Fruticultura y Enología. Pontificia Universidad Católica de Chile

Contact the author*

Keywords

Grapevine cultivars, water deficit, drought tolerance, osmotic adjustment, bulk elastic modulus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of the presence of anthocyanins on the interaction between wine phenolic compounds and high molecular weight salivary proteins

As a result of climate change consequences, there is a gap between the times at which the grapes reach the phenolic and the technology maturities.

Multispectral data from Sentinel-2 as a tool for monitoring late frost events on vineyards

Aim: Climate change is altering some aspects of winegrape production with an advancement of phenological stages which may endanger viticultural areas in the event of a late frost. This study aims to evaluate the potential of satellite-based remote sensing to assess the damage and the recovery time after late frost events.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Impact of sample size on yield estimation in commercial vineyards

The accurate estimation of yield is a fundamental for suitable viticulture, playing a pivotal role in the planning of logistics, the allocation of resources and the formulation of commercial strategies.