terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Abstract

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (Y), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism. Moreover, both cultivars exhibit a sigmoid decrease in yield as Yleaf declined, highlighting a 50% productivity reduction corresponding to a 50% reduction in stomatal conductance. However, Chardonnay demonstrated higher drought tolerance, achieving more negative Yleaf values during water deficit, with leaf turgor loss occurring at a lower Y threshold. Furthermore, differences in Yleaf between the cultivars stemmed from their distinct drought-coping mechanisms. Chardonnay employed osmotic adjustment to facilitate water movement and maintain turgor, while Sauvignon blanc relied on elastic adjustment to sustain elevated leaf water content. Sensitivity analysis suggests the limited impact of osmotic adjustment on Chardonnay’s Yleaf variability, emphasizing its function as a delayed response to water stress. Conversely, Sauvignon blanc’s higher bulk elastic modulus influences Yleaf fluctuations more prominently, promoting rapid rehydration under water scarcity. These mechanisms determined Yleaf magnitudes, with Sauvignon blanc exhibiting lower stress levels than Chardonnay.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Felipe Suárez-Vega1*, Felipe Torres-Pérez1, Bastián Silva-Gutiérrez1, Benjamín Velázquez-Pizarro1, J. Antonio Alcalde1, Alonso G. Pérez-Donoso1*

1 Departamento de Fruticultura y Enología. Pontificia Universidad Católica de Chile

Contact the author*

Keywords

Grapevine cultivars, water deficit, drought tolerance, osmotic adjustment, bulk elastic modulus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

La Région Piemonte a commencé en 1994 un projet de caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie) par une équipe pluridisciplinaire avec la participation de 6 Instituts de recherche qui travaillent dans la Région et la collaboration de 2 Associations des producteurs viticoles et des organismes de valorisation du vin Barolo.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.