terclim by ICS banner
IVES 9 IVES Conference Series 9 Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

Abstract

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (Y), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism. Moreover, both cultivars exhibit a sigmoid decrease in yield as Yleaf declined, highlighting a 50% productivity reduction corresponding to a 50% reduction in stomatal conductance. However, Chardonnay demonstrated higher drought tolerance, achieving more negative Yleaf values during water deficit, with leaf turgor loss occurring at a lower Y threshold. Furthermore, differences in Yleaf between the cultivars stemmed from their distinct drought-coping mechanisms. Chardonnay employed osmotic adjustment to facilitate water movement and maintain turgor, while Sauvignon blanc relied on elastic adjustment to sustain elevated leaf water content. Sensitivity analysis suggests the limited impact of osmotic adjustment on Chardonnay’s Yleaf variability, emphasizing its function as a delayed response to water stress. Conversely, Sauvignon blanc’s higher bulk elastic modulus influences Yleaf fluctuations more prominently, promoting rapid rehydration under water scarcity. These mechanisms determined Yleaf magnitudes, with Sauvignon blanc exhibiting lower stress levels than Chardonnay.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Felipe Suárez-Vega1*, Felipe Torres-Pérez1, Bastián Silva-Gutiérrez1, Benjamín Velázquez-Pizarro1, J. Antonio Alcalde1, Alonso G. Pérez-Donoso1*

1 Departamento de Fruticultura y Enología. Pontificia Universidad Católica de Chile

Contact the author*

Keywords

Grapevine cultivars, water deficit, drought tolerance, osmotic adjustment, bulk elastic modulus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Socioeconomic impact of the LIFE Climawin project from the perspective of employees

This study examines, from the perspective of the employees at Bosque de Matasnos—a demonstrative winery participating in the LIFE Climawin project—the socioeconomic impact and potential contributions of the initiative to the wine sector and the sustainable development of the Ribera del Duero region in Spain.

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions.