terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of NAC61 transcription factor in the regulation of berry ripening progression 

The role of NAC61 transcription factor in the regulation of berry ripening progression 

Abstract

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated. We demonstrate that NAC61 self-activates and is targeted by NAC60, another master regulator of grapevine organ maturation. Moreover, NAC61 physically interacts with NAC60 triggering the activation of common targets. In our studies, several NAC-NAC synergistic interactions were demonstrated, allowing us to suppose the existence of a NAC-dependent regulatory network orchestrating berry ripening and whose exploration is our current main purpose. As members of such regulatory network, we defined a core of 13 NACs highly correlated with NAC60, NAC61 and NAC33, the latter? being a repressor of vegetative organ growth during the vegetative-to-mature phase transition. By using DAP-Seq combined with transcriptomic data and functional assays we reconstructed a hierarchical intra-family regulatory network. We confirmed NAC60 and NAC33 as high hierarchy activators and we traced the downstream network genes been active in fruit ripening. This work is of high interest as identifying key regulators governing berry ripening progression provides important biomarkers affecting quality of grapes and wine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandra Amato1*, Chiara Foresti1, Luis Orduña2, Oscar Bellon1, Elodie Vandelle1, José Tomás Matus2,  Giovanni Battista Tornielli1, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Verona, Italy
2 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain

Contact the author*

Keywords

Ripening, NAC transcription factors, Regulatory network, Functional analysis, DAP-Seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte