terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Abstract

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters. The results highlight how the two canopy management techniques influence leaf biomass (higher LAI for ELR application) and, indirectly affect the microclimate of the canopy in terms of daily temperature fluctuations and extreme thermal events. The two strategies also modulate the photosynthetic efficiency of the canopy, contributing to increased carbon storage in the aboveground organs of the plant (vegetative and productive biomass), especially for ELR. Overall, the results show how the adopted strategies contribute to increasing the resilience traits of the vine and its ecosystem functions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Andrea Rengo1*, Elena Brunori1, Mauro Maesano1, Federico Valerio Moresi1, Riccardo Riggi1, Rita Biasi1, Giuseppe Scarascia Mugnozza1

1 Department of Innovation in Biological, Agro-Food and Forestry Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy

Contact the author*

Keywords

ground sensor platform, leaf removal, plant corroborant, canopy management strategies, viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

“Côtes du Rhône”, like many other controlled appellation wine, represents high stakes in the economical, social cultural and historical domains. The scenery formed by vineyards reveals these cultural values. It offers by a pleasant and appealing environment for the inhabitants and the tourists. It is also a powerful marketing tool for the winemakers.

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils.