terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Abstract

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters. The results highlight how the two canopy management techniques influence leaf biomass (higher LAI for ELR application) and, indirectly affect the microclimate of the canopy in terms of daily temperature fluctuations and extreme thermal events. The two strategies also modulate the photosynthetic efficiency of the canopy, contributing to increased carbon storage in the aboveground organs of the plant (vegetative and productive biomass), especially for ELR. Overall, the results show how the adopted strategies contribute to increasing the resilience traits of the vine and its ecosystem functions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Andrea Rengo1*, Elena Brunori1, Mauro Maesano1, Federico Valerio Moresi1, Riccardo Riggi1, Rita Biasi1, Giuseppe Scarascia Mugnozza1

1 Department of Innovation in Biological, Agro-Food and Forestry Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy

Contact the author*

Keywords

ground sensor platform, leaf removal, plant corroborant, canopy management strategies, viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.