terclim by ICS banner
IVES 9 IVES Conference Series 9 Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Abstract

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored. Four distinct conditions were analyzed 1) genotype difference with constant light/dark temperature conditions; 2) light vs dark with similar temperature conditions; 3) buds in light (14:00) at >0C vs <0C; 4) buds in dark (6:00 or 18:00) at >0C vs <0C; 4). Principal components analysis indicated that genotype accounted for 66% of variance and there were 1,916 and 1,559 differentially expressed genes (DEG) up and down regulated respectively, in Reisling relative to Cabernet Franc. A greater number of DEG were identified for light relative to dark samples (14:00 vs 6:00 or 18:00) and samples collected at temperatures >0C vs <0C. Gene pathway analysis showed significant positive enrichment in hormone signaling and secondary metabolite pathways in both genotypes in the >0C relative <0C temperature conditions indicating transient temperature changes enhance the metabolic activity of dormant buds.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Jason P. Londo2, Anne Fennell1

1 South Dakota State University, Brookings, SD, USA
2 Cornell University, Geneva, NY, USA

Contact the author*

Keywords

bud dormancy, freeze, chilling fulfilment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

La valorisation des Terroirs Viticoles par les Indications géographiques et les appellations d’origine

Le sujet proposé dans le thème “l’environnement juridique” est plus économique que juridique, et constitue une sorte de complément au sujet qui l’a précédé : analyse des marchés, stratégies commerciales et terroirs”.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins.

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].