terclim by ICS banner
IVES 9 IVES Conference Series 9 Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Abstract

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored. Four distinct conditions were analyzed 1) genotype difference with constant light/dark temperature conditions; 2) light vs dark with similar temperature conditions; 3) buds in light (14:00) at >0C vs <0C; 4) buds in dark (6:00 or 18:00) at >0C vs <0C; 4). Principal components analysis indicated that genotype accounted for 66% of variance and there were 1,916 and 1,559 differentially expressed genes (DEG) up and down regulated respectively, in Reisling relative to Cabernet Franc. A greater number of DEG were identified for light relative to dark samples (14:00 vs 6:00 or 18:00) and samples collected at temperatures >0C vs <0C. Gene pathway analysis showed significant positive enrichment in hormone signaling and secondary metabolite pathways in both genotypes in the >0C relative <0C temperature conditions indicating transient temperature changes enhance the metabolic activity of dormant buds.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Jason P. Londo2, Anne Fennell1

1 South Dakota State University, Brookings, SD, USA
2 Cornell University, Geneva, NY, USA

Contact the author*

Keywords

bud dormancy, freeze, chilling fulfilment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

AIM. Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides.