terclim by ICS banner
IVES 9 IVES Conference Series 9 Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Abstract

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored. Four distinct conditions were analyzed 1) genotype difference with constant light/dark temperature conditions; 2) light vs dark with similar temperature conditions; 3) buds in light (14:00) at >0C vs <0C; 4) buds in dark (6:00 or 18:00) at >0C vs <0C; 4). Principal components analysis indicated that genotype accounted for 66% of variance and there were 1,916 and 1,559 differentially expressed genes (DEG) up and down regulated respectively, in Reisling relative to Cabernet Franc. A greater number of DEG were identified for light relative to dark samples (14:00 vs 6:00 or 18:00) and samples collected at temperatures >0C vs <0C. Gene pathway analysis showed significant positive enrichment in hormone signaling and secondary metabolite pathways in both genotypes in the >0C relative <0C temperature conditions indicating transient temperature changes enhance the metabolic activity of dormant buds.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Jason P. Londo2, Anne Fennell1

1 South Dakota State University, Brookings, SD, USA
2 Cornell University, Geneva, NY, USA

Contact the author*

Keywords

bud dormancy, freeze, chilling fulfilment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].