terclim by ICS banner
IVES 9 IVES Conference Series 9 Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

Abstract

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored. Four distinct conditions were analyzed 1) genotype difference with constant light/dark temperature conditions; 2) light vs dark with similar temperature conditions; 3) buds in light (14:00) at >0C vs <0C; 4) buds in dark (6:00 or 18:00) at >0C vs <0C; 4). Principal components analysis indicated that genotype accounted for 66% of variance and there were 1,916 and 1,559 differentially expressed genes (DEG) up and down regulated respectively, in Reisling relative to Cabernet Franc. A greater number of DEG were identified for light relative to dark samples (14:00 vs 6:00 or 18:00) and samples collected at temperatures >0C vs <0C. Gene pathway analysis showed significant positive enrichment in hormone signaling and secondary metabolite pathways in both genotypes in the >0C relative <0C temperature conditions indicating transient temperature changes enhance the metabolic activity of dormant buds.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Prakriti Sharma1, Jason P. Londo2, Anne Fennell1

1 South Dakota State University, Brookings, SD, USA
2 Cornell University, Geneva, NY, USA

Contact the author*

Keywords

bud dormancy, freeze, chilling fulfilment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).

Development, validation and application of a fast UHPLC-HRMS method for the analysis of amino acids and biogenic amines in wines and musts.

The amino acids in grape juice are an important nitrogen source for yeast during alcoholic fermentation. Additionally, certain AAs are precursors to some of the volatile compounds found in wine and overall

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.