terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Abstract

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines. The leaf cuticle was observed by light microscopy, indicating that stomatal density and other anatomical features, such as trichomes and pavement cell number, were affected by modulation of VviMIXTA. GC-MS analysis found that epicuticular wax loads and composition were similarly impacted. Physiological parameters collected on a randomized set of plants in controlled conditions showed that stomatal conductance was also affected. Selected lines, identified via VviMIXTA gene expression analysis, underwent RNA-seq to evaluate the transcriptomic impact of modulating VviMIXTA expression. The results were cross-referenced with DAP-seq data to identify MIXTA high confidence target genes. Additionally, further integration of the experimental data with in silico resources available for grapevine (e.g., OneGenE and aggregated tissue-specific GCNs) is being conducted for reconstructing MIXTA´s gene regulatory network. Our work explores the potential regulatory role of VviMIXTA in epidermal cell fate and cuticular wax composition in the grapevine leaf, paving the way for molecular breeding to enhance plant resilience and improve berry quality traits.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carlotta Pirrello1*, Jenna Bryanne Jolliffe1,2, Lorenzo Vittani1, Luis Orduña3, Paolo Sonego1, Michele Faralli1,4, José Tomás Matus3, Stefania Pilati1, Justin Graham Lashbrooke2,5, Claudio Moser1

1 Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
2 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, 46908, Valencia, Spain
4 Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all’Adige, 38098, Italy
5 Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

Vitis vinifera, cuticle, stomata, trichomes, multi-omics data

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.

The role of mechanization in zone/terroir expression

Vineyard mechanization will be addressed in this review paper primarily as related to pruning and harvesting since these operations typically require a great deal of the total yearly labour demand (Intrieri and Poni, 1998). However, to be able to define how mechanization interacts with “terroir”, a rigorous definition of the latter term is needed.

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.