terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Abstract

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines. The leaf cuticle was observed by light microscopy, indicating that stomatal density and other anatomical features, such as trichomes and pavement cell number, were affected by modulation of VviMIXTA. GC-MS analysis found that epicuticular wax loads and composition were similarly impacted. Physiological parameters collected on a randomized set of plants in controlled conditions showed that stomatal conductance was also affected. Selected lines, identified via VviMIXTA gene expression analysis, underwent RNA-seq to evaluate the transcriptomic impact of modulating VviMIXTA expression. The results were cross-referenced with DAP-seq data to identify MIXTA high confidence target genes. Additionally, further integration of the experimental data with in silico resources available for grapevine (e.g., OneGenE and aggregated tissue-specific GCNs) is being conducted for reconstructing MIXTA´s gene regulatory network. Our work explores the potential regulatory role of VviMIXTA in epidermal cell fate and cuticular wax composition in the grapevine leaf, paving the way for molecular breeding to enhance plant resilience and improve berry quality traits.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carlotta Pirrello1*, Jenna Bryanne Jolliffe1,2, Lorenzo Vittani1, Luis Orduña3, Paolo Sonego1, Michele Faralli1,4, José Tomás Matus3, Stefania Pilati1, Justin Graham Lashbrooke2,5, Claudio Moser1

1 Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
2 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, 46908, Valencia, Spain
4 Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all’Adige, 38098, Italy
5 Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

Vitis vinifera, cuticle, stomata, trichomes, multi-omics data

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.

Influence of cover crops in a Tempranillo vineyard grown under the edaphoclimatic conditions of the Appellation of Origin Rueda

The way to manage the vineyard soils has certainly changed in Spain during the last years. Traditionally, the vineyards were tilled, but this growing technique has been replaced in some vineyards by the bare soil with herbicide

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).