terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

Abstract

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines. The leaf cuticle was observed by light microscopy, indicating that stomatal density and other anatomical features, such as trichomes and pavement cell number, were affected by modulation of VviMIXTA. GC-MS analysis found that epicuticular wax loads and composition were similarly impacted. Physiological parameters collected on a randomized set of plants in controlled conditions showed that stomatal conductance was also affected. Selected lines, identified via VviMIXTA gene expression analysis, underwent RNA-seq to evaluate the transcriptomic impact of modulating VviMIXTA expression. The results were cross-referenced with DAP-seq data to identify MIXTA high confidence target genes. Additionally, further integration of the experimental data with in silico resources available for grapevine (e.g., OneGenE and aggregated tissue-specific GCNs) is being conducted for reconstructing MIXTA´s gene regulatory network. Our work explores the potential regulatory role of VviMIXTA in epidermal cell fate and cuticular wax composition in the grapevine leaf, paving the way for molecular breeding to enhance plant resilience and improve berry quality traits.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carlotta Pirrello1*, Jenna Bryanne Jolliffe1,2, Lorenzo Vittani1, Luis Orduña3, Paolo Sonego1, Michele Faralli1,4, José Tomás Matus3, Stefania Pilati1, Justin Graham Lashbrooke2,5, Claudio Moser1

1 Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
2 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, 46908, Valencia, Spain
4 Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all’Adige, 38098, Italy
5 Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa

Contact the author*

Keywords

Vitis vinifera, cuticle, stomata, trichomes, multi-omics data

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

“Côtes du Rhône”, like many other controlled appellation wine, represents high stakes in the economical, social cultural and historical domains. The scenery formed by vineyards reveals these cultural values. It offers by a pleasant and appealing environment for the inhabitants and the tourists. It is also a powerful marketing tool for the winemakers.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.