terclim by ICS banner
IVES 9 IVES Conference Series 9 Heat-stress responses regulated via a MYB24-MYC2 complex

Heat-stress responses regulated via a MYB24-MYC2 complex

Abstract

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages. Half of URGs highly co-express with MYB24, and MapMan analysis discloses many significantly enriched heat-related terms. Specifically, 18 co-expressed URGs were reported as heat-induced genes. Due to the DNA-binding capacity of MYB24 and MYC2, we investigated their regulatory potential by taking advantage of DAP-seq data. More than 40 of these co-expressed URGs, named as MYB24/MYC2 high confidence targets (HCTs), are bound by both TFs or one of them in their 5kb upstream region. In particular, some HCTs have been previously and functionally validated as heat regulators or heat-induced genes. Furthermore, MYB24, MYC2, and a high proportion of their HCTs were significantly induced in reanalyzed heat-treatment transcriptomic studies. To sum up, our data suggests that the MYB24-MYC2 complex plays a key role in the hierarchical regulation of heat responses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chen Zhang1, David Navarro-Paya1, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain

Contact the author*

Keywords

MYB24, MYC2, heat stress, transcriptomics, transcriptional regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terroir characterization from cv. Merlot and Sauvignon plots follow-up within the scope of wine-production : “Vins de Pays Charentais” in the Cognac eaux-de-vie vineyard area

Dans les études des terroirs, il est souvent délicat d’établir des zonages et de mesurer les effets de l’environnement sur les vins. Avec plus d’un million d’hectares dans l’aire d’appellation délimitée, le terroir du célèbre vignoble de Cognac est bien connu pour ces eaux-de-vie et ainsi divisé en 6 crus.

Which microorganisms contribute to mousy off-flavour in our wines?

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about Which microorganisms contribute to mousy off-flavour in owines. This presentation is based on articles accessible for free on OENO One and IVES Technical Reviews.

Effect of foliar treatment of methyl jasmonate and nanoparticles doped with methyl jasmonate on Monastrell grape skin cell wall

The use of elicitors to promote the biosynthesis of secondary metabolites in grapes has been tackled in several reports, however its study linked to nanotechnology is less developed.

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences