terclim by ICS banner
IVES 9 IVES Conference Series 9 Heat-stress responses regulated via a MYB24-MYC2 complex

Heat-stress responses regulated via a MYB24-MYC2 complex

Abstract

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages. Half of URGs highly co-express with MYB24, and MapMan analysis discloses many significantly enriched heat-related terms. Specifically, 18 co-expressed URGs were reported as heat-induced genes. Due to the DNA-binding capacity of MYB24 and MYC2, we investigated their regulatory potential by taking advantage of DAP-seq data. More than 40 of these co-expressed URGs, named as MYB24/MYC2 high confidence targets (HCTs), are bound by both TFs or one of them in their 5kb upstream region. In particular, some HCTs have been previously and functionally validated as heat regulators or heat-induced genes. Furthermore, MYB24, MYC2, and a high proportion of their HCTs were significantly induced in reanalyzed heat-treatment transcriptomic studies. To sum up, our data suggests that the MYB24-MYC2 complex plays a key role in the hierarchical regulation of heat responses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chen Zhang1, David Navarro-Paya1, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain

Contact the author*

Keywords

MYB24, MYC2, heat stress, transcriptomics, transcriptional regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Are biochemical markers the key to predicting wine aroma balance?

Wine aroma quality is a complex interplay of factors like terroir, vinification techniques, that modulate aroma compound composition.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.