terclim by ICS banner
IVES 9 IVES Conference Series 9 Heat-stress responses regulated via a MYB24-MYC2 complex

Heat-stress responses regulated via a MYB24-MYC2 complex

Abstract

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages. Half of URGs highly co-express with MYB24, and MapMan analysis discloses many significantly enriched heat-related terms. Specifically, 18 co-expressed URGs were reported as heat-induced genes. Due to the DNA-binding capacity of MYB24 and MYC2, we investigated their regulatory potential by taking advantage of DAP-seq data. More than 40 of these co-expressed URGs, named as MYB24/MYC2 high confidence targets (HCTs), are bound by both TFs or one of them in their 5kb upstream region. In particular, some HCTs have been previously and functionally validated as heat regulators or heat-induced genes. Furthermore, MYB24, MYC2, and a high proportion of their HCTs were significantly induced in reanalyzed heat-treatment transcriptomic studies. To sum up, our data suggests that the MYB24-MYC2 complex plays a key role in the hierarchical regulation of heat responses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chen Zhang1, David Navarro-Paya1, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain

Contact the author*

Keywords

MYB24, MYC2, heat stress, transcriptomics, transcriptional regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature