terclim by ICS banner
IVES 9 IVES Conference Series 9 Heat-stress responses regulated via a MYB24-MYC2 complex

Heat-stress responses regulated via a MYB24-MYC2 complex

Abstract

Throughout the growing season, grapevine frequently encounters environmental challenges associated with heat and light radiation stress, especially during the ripening stage, thereby constraining the yield and quality of berries. MYB24 has been previously proposed to control light responses during late fruit ripening stages, and it has been found to require the co-factor MYC2. We have generated transcriptomic data from grapevine leaves transiently co-transformed with MYB24 and MYC2. Differential expression analysis revealed 179 up-regulated genes (URGs). Considering tissue specificity, where MYB24 is specifically and highly expressed in flowers and late-ripening berries, the expression of these URGs was explored using a previously published Berry Development Atlas gathering berry development data of cv. ‘Pinot Noir’ and ‘Cabernet Sauvignon’ in different vintages. Half of URGs highly co-express with MYB24, and MapMan analysis discloses many significantly enriched heat-related terms. Specifically, 18 co-expressed URGs were reported as heat-induced genes. Due to the DNA-binding capacity of MYB24 and MYC2, we investigated their regulatory potential by taking advantage of DAP-seq data. More than 40 of these co-expressed URGs, named as MYB24/MYC2 high confidence targets (HCTs), are bound by both TFs or one of them in their 5kb upstream region. In particular, some HCTs have been previously and functionally validated as heat regulators or heat-induced genes. Furthermore, MYB24, MYC2, and a high proportion of their HCTs were significantly induced in reanalyzed heat-treatment transcriptomic studies. To sum up, our data suggests that the MYB24-MYC2 complex plays a key role in the hierarchical regulation of heat responses.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chen Zhang1, David Navarro-Paya1, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980 Paterna, Valencia, Spain

Contact the author*

Keywords

MYB24, MYC2, heat stress, transcriptomics, transcriptional regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

Le terme ”Albariza” (du latin “albus“, blanc) déterminait à l’origine un type particulier du terrain calcaire, mais à présent il sert aussi à définir les sols et la bibliographie géologique actuelle le cite également pour de roches sédimentaires originaires du Neogene Betic.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).