terclim by ICS banner
IVES 9 IVES Conference Series 9 Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Abstract

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS. Vcmax, tightly linked with Rubisco, an important N2 sink in leaves, was strongly reduced after water deficit in both varieties, even though the total leaf N2 at harvest was only reduced in CS under deficit. The yeast assimilable nitrogen in berries, on the other hand, was not affected at harvest, but only after the water deficit was imposed in CS, mainly accountable for ammonium, not primary amino acids. Yet, arginine, the most abundant amino acid in CH was affected by water deficit. N2 allocation to berries is highly favoured, despite the reduced capacity for N2 uptake as inferred from the reduced transcript abundance for N2 transporters in active roots. Further discussion will be made based on N2 transporters in plant parts.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Claudio Pastenes1*, Andrea Ávila-Valdés1, Álvaro Peña-Neira1, Carlos Pérez1, Benjamín Rosales1, Marco Garrido1, Reinaldo Campos1, Carol Leiva1, José Ignacio Covarrubias1

1 Affliliation 1 Universidad de Chile, Facultad de Ciencias Agronómicas

Contact the author*

Keywords

nitrogen intake, nitrogen transporters, photosynthesis, water deficit, YAN

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage.