terclim by ICS banner
IVES 9 IVES Conference Series 9 Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Abstract

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS. Vcmax, tightly linked with Rubisco, an important N2 sink in leaves, was strongly reduced after water deficit in both varieties, even though the total leaf N2 at harvest was only reduced in CS under deficit. The yeast assimilable nitrogen in berries, on the other hand, was not affected at harvest, but only after the water deficit was imposed in CS, mainly accountable for ammonium, not primary amino acids. Yet, arginine, the most abundant amino acid in CH was affected by water deficit. N2 allocation to berries is highly favoured, despite the reduced capacity for N2 uptake as inferred from the reduced transcript abundance for N2 transporters in active roots. Further discussion will be made based on N2 transporters in plant parts.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Claudio Pastenes1*, Andrea Ávila-Valdés1, Álvaro Peña-Neira1, Carlos Pérez1, Benjamín Rosales1, Marco Garrido1, Reinaldo Campos1, Carol Leiva1, José Ignacio Covarrubias1

1 Affliliation 1 Universidad de Chile, Facultad de Ciencias Agronómicas

Contact the author*

Keywords

nitrogen intake, nitrogen transporters, photosynthesis, water deficit, YAN

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Exploring the effect of oxygen exposure during malolactic fermentation on red wine color

this research investigates the impact of early oxygen exposure, also during malolactic fermentation (MLF), on pigments and color of a red wine from Sangiovese grapes

Multidisciplinary strategies for understanding ill-defined concepts

Aims: The objective of the present work is to review strategies applied to decrypt multidimensional and ill-defined concepts employed by winemakers and to illustrate these strategies with recent applications.

Aroma composition of mono-varietal white wines for the production of Custoza

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy.