terclim by ICS banner
IVES 9 IVES Conference Series 9 Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Abstract

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions. A better understanding of the role of ST in vineyards can help to better manage and predict the performance of vines, plant-soil relations and soil microbiome under extreme climate scenarios. In addition, climatic and thermal data (of plants, soil) can be integrated into Decision Support Systems (DSS) to support vineyard management. Improved soil characterization, improved practices of soil management and imaging (e.g. thermography) can be combined to support management. Strategies to mitigate the impacts of climate change, optimize ST variation and vine thermal microclimate (leaf and berry) are proposed and discussed, with emphasis on Mediterranean systems.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Joaquim Miguel Costa 1,2*, Ricardo Egipto3, Paulo Marques4, Francisca C. Aguiar2,5, Amaia Nogales1, Manuel Madeira 5

1 Linking Landscape, Environment, Agriculture and Food, LEAF Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
2 Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
3 INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, Dois Portos, Portugal
4 Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Contact the author*

Keywords

row-crops, soil and canopy management, thermal sensing, water, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

The concept of « terroir »: what does that mean ? What is it useful for ? French young adults perception

Far from complicated discussions on the relevant way to define « terroir », this article deals with the social perception that French young adults (aged from 18 to 30) have of this concept and the way it can help them to become wine consumers.

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja