terclim by ICS banner
IVES 9 IVES Conference Series 9 Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Abstract

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions. A better understanding of the role of ST in vineyards can help to better manage and predict the performance of vines, plant-soil relations and soil microbiome under extreme climate scenarios. In addition, climatic and thermal data (of plants, soil) can be integrated into Decision Support Systems (DSS) to support vineyard management. Improved soil characterization, improved practices of soil management and imaging (e.g. thermography) can be combined to support management. Strategies to mitigate the impacts of climate change, optimize ST variation and vine thermal microclimate (leaf and berry) are proposed and discussed, with emphasis on Mediterranean systems.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Joaquim Miguel Costa 1,2*, Ricardo Egipto3, Paulo Marques4, Francisca C. Aguiar2,5, Amaia Nogales1, Manuel Madeira 5

1 Linking Landscape, Environment, Agriculture and Food, LEAF Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
2 Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
3 INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, Dois Portos, Portugal
4 Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Contact the author*

Keywords

row-crops, soil and canopy management, thermal sensing, water, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Improving grapevine cloning material of Welshriesling by comprehensive analysis

The important grape variety Welschriesling for Austrian and Southeast European viticulture has been selectively bred over the years for improving some quantitative traits. Collected genotypes as well as the local clones were examined from agricultural, analytical, sensory, and genetic perspectives.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.