terclim by ICS banner
IVES 9 IVES Conference Series 9 Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

Abstract

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions. A better understanding of the role of ST in vineyards can help to better manage and predict the performance of vines, plant-soil relations and soil microbiome under extreme climate scenarios. In addition, climatic and thermal data (of plants, soil) can be integrated into Decision Support Systems (DSS) to support vineyard management. Improved soil characterization, improved practices of soil management and imaging (e.g. thermography) can be combined to support management. Strategies to mitigate the impacts of climate change, optimize ST variation and vine thermal microclimate (leaf and berry) are proposed and discussed, with emphasis on Mediterranean systems.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Joaquim Miguel Costa 1,2*, Ricardo Egipto3, Paulo Marques4, Francisca C. Aguiar2,5, Amaia Nogales1, Manuel Madeira 5

1 Linking Landscape, Environment, Agriculture and Food, LEAF Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
2 Laboratório Associado TERRA, Instituto Superior de Agronomia, Lisboa, Portugal
3 INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação de Dois Portos, Dois Portos, Portugal
4 Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Contact the author*

Keywords

row-crops, soil and canopy management, thermal sensing, water, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

Evaluating analytical methods for quantification of glutathione in grape juice and wine

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage.

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.