terclim by ICS banner
IVES 9 IVES Conference Series 9 UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Abstract

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elaboration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.

The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration. Bacterial strains were typed by multiple loci VNTR analysis (MLVA) based on five tandem repeats loci and 3 different strains were chosen as starters for the sparkling wine production.

Xinomavro base wine was treated according to the winery production protocol and second fermentation was realised in the bottle under 6 different inoculation schemes.1) addition of S. cerevisiae (Lalvin DV10) 2) addition of S. cerevisiae (Lalvin DV10) and Lysozyme (40g/hL) 3) addition of S. cerevisiae (Lalvin DV10) and O. oeni Greek strain (UNIWA collection) 4) addition of S. cerevisiae (Lalvin DV10) and O. oeni French strain (CRBO collection) 5) addition of S. cerevisiae (Lalvin DV10) and O. oeni Commercial strain 6) addition of Schizo saccharomyces pombe strain (NRRL collection). Twelve months after the second fermentation in the bottle, oenological parameters were determined according to the OIV protocols, the volatile compounds produced were measured by GC/MS, and the metabolomic fingerprint analysis were acquired by an UPLC-HDMS-QTof-MS instrument. Finally, all produced wines were evaluated by quantitative descriptive sensorial analysis.

Malolactic fermentations were realized in all cases except the condition n°2 where lysozyme was added. Forty compounds were quantified and separated according to their chemical classes (monoterpenes, norisoprenoids, aldehydes, alcohols, esters, acids, and ketones) while statistical analysis showed the presence of three groups of sparkling wines according to the inoculation scheme. The untargeted metabolomic approach clearly discriminated the action of bacteria and revealed intra species variability at strain level. This is the first time that highlights the role of lactic acid bacteria and precisely of the species of O. oeni to sparkling wine elaboration.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Maria DIMOPOULOU1,2, Margot PAULIN1, Olivier CLAISSE1, Cécile MIOT-SERTIER1, Fotini DROSOU2, Panagiotis ARAPITSAS2,3, Marguerite DOLS-LAFARGUE1

1. Bordeaux, Bordeaux INP, INRAE, UMR OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Department of Wine, Vine, and Beverage Sciences, School of Food Science, University of West Attica, Athens, Greece
3. Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy

Contact the author*

Keywords

sparkling wine, malolactic fermentation, Xinomavro, bacteria

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.