terclim by ICS banner
IVES 9 IVES Conference Series 9 Regulation of terpene production in methyl jasmonate treated cell-cultures

Regulation of terpene production in methyl jasmonate treated cell-cultures

Abstract

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.  MapMan enrichment analysis on their TOP420 co-expressed genes (CEGs) allowed us to delimit some TFs highly enriched in jasmonate-related terms. This was the case of VviMYC2, the only grape member of the bHLH IIIe subgroup, and the best candidate for studying the regulation of jasmonate signaling. We confirmed the binding potential of MYC2 by DAP-seq, and combining it to the list of MeJA-URGs and MYC2-CEGs, we generated a list of high-confidence targets that included jasmonate-related genes and TFs such as MYB24, previously found to interact with MYC2 and required for the activation of terpenoid genes. In concordance, our MeJA data showed 13 significantly induced TPS genes, 9 of which are bound by MYB24, MYC2 or both. A few terpenoid compounds associated with the induced TPSs were significantly accumulated by MeJA. Our data suggests MYC2 regulates the jasmonate pathway and mediates terpene production cooperating with MYB24 in response to MeJA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jone Echeverria1, Chen Zhang1, Chiara Foresti2 Antonio Santiago1, Luis Orduña1, Paolo Sonego3, Massimo Pindo3, Sara Zenoni2, Marco Moretto3, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Department of Biotechnology, University of Verona, 37134, Verona, Italy
3 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy

Contact the author*

Keywords

gene expression, plant cell suspensions, terpenes, methyl jasmonate, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Wine as cultural national heritage: 10 years of the “Vino Bebida Nacional” law in Argentina: review and lessons

Ten years have passed since the enactment and implementation of law no. 26,870 “national drink wine” in Argentina, a pioneering legislation worldwide that seeks to disseminate the cultural characteristics inherent in the production, elaboration, and consumption of wine, as well as its deep-rooted traditions.

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.