terclim by ICS banner
IVES 9 IVES Conference Series 9 Regulation of terpene production in methyl jasmonate treated cell-cultures

Regulation of terpene production in methyl jasmonate treated cell-cultures

Abstract

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.  MapMan enrichment analysis on their TOP420 co-expressed genes (CEGs) allowed us to delimit some TFs highly enriched in jasmonate-related terms. This was the case of VviMYC2, the only grape member of the bHLH IIIe subgroup, and the best candidate for studying the regulation of jasmonate signaling. We confirmed the binding potential of MYC2 by DAP-seq, and combining it to the list of MeJA-URGs and MYC2-CEGs, we generated a list of high-confidence targets that included jasmonate-related genes and TFs such as MYB24, previously found to interact with MYC2 and required for the activation of terpenoid genes. In concordance, our MeJA data showed 13 significantly induced TPS genes, 9 of which are bound by MYB24, MYC2 or both. A few terpenoid compounds associated with the induced TPSs were significantly accumulated by MeJA. Our data suggests MYC2 regulates the jasmonate pathway and mediates terpene production cooperating with MYB24 in response to MeJA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jone Echeverria1, Chen Zhang1, Chiara Foresti2 Antonio Santiago1, Luis Orduña1, Paolo Sonego3, Massimo Pindo3, Sara Zenoni2, Marco Moretto3, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Department of Biotechnology, University of Verona, 37134, Verona, Italy
3 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy

Contact the author*

Keywords

gene expression, plant cell suspensions, terpenes, methyl jasmonate, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

L’objectif de l’étude était de connaître le rôle du climat sur les aspects phénologiques du cépage « Moscato bianco » dans les différentes zones de production du vin Moscato d’Asti aocg en Piemonte (Italie) et ses effets sur l’époque de vendange. La représentation cartographique ( échelle 1 :25000) de exposition, altitude, climat, index

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

Photodegradation of retsina wine: does pine resin protect against light-induced changes?

Retsina is a wine deeply rooted in Greek tradition but often misunderstood, largely due to the poor quality associated with past production. Historically, pine resin was used to seal wine transport containers, and over time, its distinctive aroma led to its intentional incorporation into winemaking.

Chemical systems behind wine aroma perception: overview, genesis and evolution

This talk presents a revision of our knowledge and understanding of the role played by the different aroma chemicals in the positive aroma attributes of wine. A systematic approach to classifying the different aroma chemicals of wine is presented .