terclim by ICS banner
IVES 9 IVES Conference Series 9 Regulation of terpene production in methyl jasmonate treated cell-cultures

Regulation of terpene production in methyl jasmonate treated cell-cultures

Abstract

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.  MapMan enrichment analysis on their TOP420 co-expressed genes (CEGs) allowed us to delimit some TFs highly enriched in jasmonate-related terms. This was the case of VviMYC2, the only grape member of the bHLH IIIe subgroup, and the best candidate for studying the regulation of jasmonate signaling. We confirmed the binding potential of MYC2 by DAP-seq, and combining it to the list of MeJA-URGs and MYC2-CEGs, we generated a list of high-confidence targets that included jasmonate-related genes and TFs such as MYB24, previously found to interact with MYC2 and required for the activation of terpenoid genes. In concordance, our MeJA data showed 13 significantly induced TPS genes, 9 of which are bound by MYB24, MYC2 or both. A few terpenoid compounds associated with the induced TPSs were significantly accumulated by MeJA. Our data suggests MYC2 regulates the jasmonate pathway and mediates terpene production cooperating with MYB24 in response to MeJA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jone Echeverria1, Chen Zhang1, Chiara Foresti2 Antonio Santiago1, Luis Orduña1, Paolo Sonego3, Massimo Pindo3, Sara Zenoni2, Marco Moretto3, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Department of Biotechnology, University of Verona, 37134, Verona, Italy
3 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy

Contact the author*

Keywords

gene expression, plant cell suspensions, terpenes, methyl jasmonate, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Un exemple de valorisation d’une étude de terroir au sein d’une unité coopérative de production à Saint Hilaire d’Ozilhan (Gard) dans les cotes du Rhône

The winegrowers of the intercommunal cooperative cellar of Saint Hilaire d’Ozilhan have been practicing terroir selection for ten years. Five years ago, after having equipped themselves with an efficient commercial structure, and anxious to improve knowledge of their terroirs and to better control quantitatively and qualitatively the range of typicality that they can develop, they asked the Syndicate Général des Vignerons Réunis des Côtes du Rhône and the Institut Coopératif du Vin to help them set up an approach to better judge the behavior of the Grenache and Syrah grape varieties in the different terroirs, then to enhance this work through the improving product quality.

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality.
The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.