terclim by ICS banner
IVES 9 IVES Conference Series 9 Regulation of terpene production in methyl jasmonate treated cell-cultures

Regulation of terpene production in methyl jasmonate treated cell-cultures

Abstract

Terpenes are responsible for flavors and aromas of grapes, however, they also protect from radiation, participate in biotic stress and antioxidant mechanisms. The phytohormone methyl jasmonate (MeJA) mediates many of these stress responses and has been associated with increased terpene content in berries. Here, we generated transcriptomic data of Vitis vinifera cv. ‘Gamay’ cells treated with MeJA (100 μM) and cyclodextrins (50 μM) to understand these responses. Ontology analysis revealed that up-regulated genes (URGs) were enriched in jasmonic acid biosynthesis and signaling terms, as expected. Inspection of transcription factors (TFs) among URGs allowed us to study uncharacterized TFs.  MapMan enrichment analysis on their TOP420 co-expressed genes (CEGs) allowed us to delimit some TFs highly enriched in jasmonate-related terms. This was the case of VviMYC2, the only grape member of the bHLH IIIe subgroup, and the best candidate for studying the regulation of jasmonate signaling. We confirmed the binding potential of MYC2 by DAP-seq, and combining it to the list of MeJA-URGs and MYC2-CEGs, we generated a list of high-confidence targets that included jasmonate-related genes and TFs such as MYB24, previously found to interact with MYC2 and required for the activation of terpenoid genes. In concordance, our MeJA data showed 13 significantly induced TPS genes, 9 of which are bound by MYB24, MYC2 or both. A few terpenoid compounds associated with the induced TPSs were significantly accumulated by MeJA. Our data suggests MYC2 regulates the jasmonate pathway and mediates terpene production cooperating with MYB24 in response to MeJA.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Jone Echeverria1, Chen Zhang1, Chiara Foresti2 Antonio Santiago1, Luis Orduña1, Paolo Sonego3, Massimo Pindo3, Sara Zenoni2, Marco Moretto3, José Tomás Matus1*

1 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
2 Department of Biotechnology, University of Verona, 37134, Verona, Italy
3 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy

Contact the author*

Keywords

gene expression, plant cell suspensions, terpenes, methyl jasmonate, transcription factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Bio-modulating wine acidity: The role of non-Saccharomyces yeasts

In this video recording of the IVES science meeting 2021, Alice Maria Correia Vilela (University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about bio-modulating wine acidity: the role of non-Saccharomyces yeasts. This presentation is based on an original article accessible for free on IVES Technical Reviews.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.