terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates


The elemental composition (the ionome) of grape leaves is an important indicator of nutritional health, but its genetic architecture has received limited scientific attention. In this study, we analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations. Varimax-rotated PCA performed on the leaf ionome separated the two Missouri vineyards from their New York and South Dakota counterparts, even though the first two principal components accounted for only 27.8% of the variance. Using a GBS-based linkage map and the concentration of individual elements as phenotype, we were able to map nine QTL which could be detected at more than one vineyard locations. We were also able detect a QTL when we applied ionomic profile-derived PC1 scores as phenotype. Interestingly, this PCA-derived QTL mapped to the same locus as the QTL for potassium concentration.


Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster


Jesse Krokower1, Courteny Coleman1, Courtney Duncan1, Zachary Harris2, Samantha Mazumder2, Anne Fennell3, Allison Miller2, Jason Londo4, Misha Kwasniewski5, Laszlo Kovacs1*

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 Department of Plant Science, South Dakota State University, Brookings, SD USA
School of Integrative Plant Science, Cornell University, Geneva, NY USA
Department of Food Science, Pennsylvania State University, University Park, PA USA

Contact the author*


Ionome, mineral nutrition, quantitative trait loci, Vitis rupestris, Vitis riparia


IVES Conference Series | Open GPB | Open GPB 2024


Related articles…

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,


The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Re-examination and meta-analysis of previous research as a tool to evaluate the suitability of rootstocks in adaptation to global change. A study case from Spanish viticulture

Meta-analysis (MA) is a method that allows statistical synthesis of the results of several similar individual studies (Figure 1). This term was introduced by Glass in 1976 as a useful tool for the scientific community to pool and summarise the enormous amount of information collected in the literature.

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Planting vineyards in cooler climates has been used over recent years as
a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.