terclim by ICS banner
IVES 9 IVES Conference Series 9 Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

Abstract

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes. The effects of metabolites and transcriptome were more evident in vintage with weaker light indicating the key regulator of light exposure under semi-arid regions. In addition, the potential key transcription factors regulating the biosynthesis of the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were identified through weighted correlation network analysis. Taken together, this study provides a valuable overview of metabolic and transcriptomic responses of grapes exposed to inter-row mulch treatment in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Meng-Bo Tian1,2, Yu Wang1,2, Jun Wang1,2,*

1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Contact the author*

Keywords

grape, floor management, microclimate, phenolic compounds, volatile compounds

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Geological influences on terroir development

Geological influences on terroir development

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.