terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Abstract

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison. Stomatal conductance was measured with a porometer, pre-dawn and mid-day stem water potentials with a Scholander-type pressure chamber, and fruit growth with a caliper. `Cabernet Franc` and `Riesling` exhibited a greater ability to maintain stomatal conductance, pre-dawn water potential, and mid-day water potential as compared to `Semillon` and `Grenache`. `Cabernet Franc` and `Riesling` were also more resistant to changes in fruit growth than `Semillon` and `Grenache` during both short- and long-term water deficit. Water deficit applied at pre-veraison had a larger impact on fruit growth than when applied at post-veraison. While we were not able to distinctly classify varieties based on common metrics of isohydricity, we found an association between the ability of varieties to maintain stomatal conductance and their ability to maintain fruit growth during water deficit.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Nikolas Wilson1,2*, Leonardo Campigotto3, Thorsten Knipfer1, Simone D. Castellarin1,2

1 Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
2 Applied Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
3 Department of Agri-food, Environmental and Animal Sciences, University of Udine, Udine, Italy

Contact the author*

Keywords

water deficit, fruit growth, stomata, water potential, isohydricity

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.