terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Abstract

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison. Stomatal conductance was measured with a porometer, pre-dawn and mid-day stem water potentials with a Scholander-type pressure chamber, and fruit growth with a caliper. `Cabernet Franc` and `Riesling` exhibited a greater ability to maintain stomatal conductance, pre-dawn water potential, and mid-day water potential as compared to `Semillon` and `Grenache`. `Cabernet Franc` and `Riesling` were also more resistant to changes in fruit growth than `Semillon` and `Grenache` during both short- and long-term water deficit. Water deficit applied at pre-veraison had a larger impact on fruit growth than when applied at post-veraison. While we were not able to distinctly classify varieties based on common metrics of isohydricity, we found an association between the ability of varieties to maintain stomatal conductance and their ability to maintain fruit growth during water deficit.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Nikolas Wilson1,2*, Leonardo Campigotto3, Thorsten Knipfer1, Simone D. Castellarin1,2

1 Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
2 Applied Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
3 Department of Agri-food, Environmental and Animal Sciences, University of Udine, Udine, Italy

Contact the author*

Keywords

water deficit, fruit growth, stomata, water potential, isohydricity

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Behavior of disease resistant grapevine varieties to downy mildew (Plasmopara viticola) infections in the Castelli Romani area (Central Italy)

At CREA – Centro di Ricerca di Viticoltura ed Enologia, based in Velletri (RM), an experimental vineyard including 10 downy mildew resistent/tolerant grape varieties and two susceptible varieties was set up with the principal goal to evaluate the behavoir of these varieties in term of resistance to downy mildew (Plasmopara viticola). This evaluation, together to oenological studies, are necessary to register them also in Regional Register (in Lazio region). Monitoring of behavior towards Plasmopara viticulture of resistant vines were done in 2020 and 2021 at different times (phenological stages) and until harvesting, according to an international standard code BBCH a centesimal phenological scale, based on coding system.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.