terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Abstract

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison. Stomatal conductance was measured with a porometer, pre-dawn and mid-day stem water potentials with a Scholander-type pressure chamber, and fruit growth with a caliper. `Cabernet Franc` and `Riesling` exhibited a greater ability to maintain stomatal conductance, pre-dawn water potential, and mid-day water potential as compared to `Semillon` and `Grenache`. `Cabernet Franc` and `Riesling` were also more resistant to changes in fruit growth than `Semillon` and `Grenache` during both short- and long-term water deficit. Water deficit applied at pre-veraison had a larger impact on fruit growth than when applied at post-veraison. While we were not able to distinctly classify varieties based on common metrics of isohydricity, we found an association between the ability of varieties to maintain stomatal conductance and their ability to maintain fruit growth during water deficit.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Nikolas Wilson1,2*, Leonardo Campigotto3, Thorsten Knipfer1, Simone D. Castellarin1,2

1 Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
2 Applied Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
3 Department of Agri-food, Environmental and Animal Sciences, University of Udine, Udine, Italy

Contact the author*

Keywords

water deficit, fruit growth, stomata, water potential, isohydricity

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].