terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Abstract

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison. Stomatal conductance was measured with a porometer, pre-dawn and mid-day stem water potentials with a Scholander-type pressure chamber, and fruit growth with a caliper. `Cabernet Franc` and `Riesling` exhibited a greater ability to maintain stomatal conductance, pre-dawn water potential, and mid-day water potential as compared to `Semillon` and `Grenache`. `Cabernet Franc` and `Riesling` were also more resistant to changes in fruit growth than `Semillon` and `Grenache` during both short- and long-term water deficit. Water deficit applied at pre-veraison had a larger impact on fruit growth than when applied at post-veraison. While we were not able to distinctly classify varieties based on common metrics of isohydricity, we found an association between the ability of varieties to maintain stomatal conductance and their ability to maintain fruit growth during water deficit.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Nikolas Wilson1,2*, Leonardo Campigotto3, Thorsten Knipfer1, Simone D. Castellarin1,2

1 Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
2 Applied Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
3 Department of Agri-food, Environmental and Animal Sciences, University of Udine, Udine, Italy

Contact the author*

Keywords

water deficit, fruit growth, stomata, water potential, isohydricity

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.