terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Abstract

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison. Stomatal conductance was measured with a porometer, pre-dawn and mid-day stem water potentials with a Scholander-type pressure chamber, and fruit growth with a caliper. `Cabernet Franc` and `Riesling` exhibited a greater ability to maintain stomatal conductance, pre-dawn water potential, and mid-day water potential as compared to `Semillon` and `Grenache`. `Cabernet Franc` and `Riesling` were also more resistant to changes in fruit growth than `Semillon` and `Grenache` during both short- and long-term water deficit. Water deficit applied at pre-veraison had a larger impact on fruit growth than when applied at post-veraison. While we were not able to distinctly classify varieties based on common metrics of isohydricity, we found an association between the ability of varieties to maintain stomatal conductance and their ability to maintain fruit growth during water deficit.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Nikolas Wilson1,2*, Leonardo Campigotto3, Thorsten Knipfer1, Simone D. Castellarin1,2

1 Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
2 Applied Biology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
3 Department of Agri-food, Environmental and Animal Sciences, University of Udine, Udine, Italy

Contact the author*

Keywords

water deficit, fruit growth, stomata, water potential, isohydricity

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Research summary on the use of Terroir as a wine purchasing cue

Due to the current challenging nature of the global wine market, and recent growth in number and strength of competitors from non-traditional wine producing countries, European wine producers are focussing on the potential to develop a competitive advantage through the concept of terroir.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Multi-mineral wine profiling and Artificial Intelligence: Implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry

Multi-mineral wine profiling and artificial intelligence: implementing the signatures of each wine to train algorithms to meet the new challenges facing the wine industry. Although their quantity is minimal, minerals are essential elements in the composition of every wine. Their presence is the result of complex interactions between factors such as soil, vines, climate, topography, and viticultural practices, all influenced by the terroir. Each stage of the winemaking process also contributes to shaping the unique mineral and taste profile of each wine, giving each cuvée its distinctive characteristics.