terclim by ICS banner
IVES 9 IVES Conference Series 9 Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Abstract

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity. Nonetheless, employing a strategy solely based on ozone applications resulted in higher disease incidence and severity levels compared to the conventional treatment, particularly in the Tempranillo variety. These findings underscore the potential of ozone as a component of integrated disease management strategies in vineyards, offering an environmentally friendly alternative to traditional phytosanitary products. However, caution is warranted when relying solely on ozone, as observed efficacy variations across grape varieties suggest a need for tailored approaches. Further research is needed to optimize ozone application methods and explore its interactions with different grapevine cultivars and environmental conditions. In conclusion, while ozone shows promise as a tool for reducing conventional phytosanitary product usage in powdery mildew control, its effectiveness may be limited as a standalone method, particularly in certain grape varieties like Tempranillo. This study contributes to ongoing efforts to refine disease management strategies in viticulture, emphasizing the importance of integrated approaches for sustainable grape production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cuadrado-Galera Isabel1*, Varela Alejandro1, Arbizu-Milagro, Julia1, Tascón Alberto1, González-López Óscar1 ,Castillo-Ruiz Francisco José1, 2

1Universidad de La Rioja. Departamento de Agricultura y Alimentación. Facultad de Ciencia y Tecnología, C/ Madre de Dios, 53, 26006, Logroño, España
2Departamento de Ingeniería Rural, Construcciones Civiles y Proyectos de Ingeniería. E.T.S. de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Rabanales, Edificio Leonardo Da Vinci, ctra. N-IV, km 396, 14014, Córdoba, España

Contact the author*

Keywords

incidence, severity, ozone, grapevines, phytosanitary treatment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.

Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity).