terclim by ICS banner
IVES 9 IVES Conference Series 9 Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Abstract

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity. Nonetheless, employing a strategy solely based on ozone applications resulted in higher disease incidence and severity levels compared to the conventional treatment, particularly in the Tempranillo variety. These findings underscore the potential of ozone as a component of integrated disease management strategies in vineyards, offering an environmentally friendly alternative to traditional phytosanitary products. However, caution is warranted when relying solely on ozone, as observed efficacy variations across grape varieties suggest a need for tailored approaches. Further research is needed to optimize ozone application methods and explore its interactions with different grapevine cultivars and environmental conditions. In conclusion, while ozone shows promise as a tool for reducing conventional phytosanitary product usage in powdery mildew control, its effectiveness may be limited as a standalone method, particularly in certain grape varieties like Tempranillo. This study contributes to ongoing efforts to refine disease management strategies in viticulture, emphasizing the importance of integrated approaches for sustainable grape production.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Cuadrado-Galera Isabel1*, Varela Alejandro1, Arbizu-Milagro, Julia1, Tascón Alberto1, González-López Óscar1 ,Castillo-Ruiz Francisco José1, 2

1Universidad de La Rioja. Departamento de Agricultura y Alimentación. Facultad de Ciencia y Tecnología, C/ Madre de Dios, 53, 26006, Logroño, España
2Departamento de Ingeniería Rural, Construcciones Civiles y Proyectos de Ingeniería. E.T.S. de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Rabanales, Edificio Leonardo Da Vinci, ctra. N-IV, km 396, 14014, Córdoba, España

Contact the author*

Keywords

incidence, severity, ozone, grapevines, phytosanitary treatment

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

SAVOIR: A project promoting innovative and effective prophylactic methods in viticulture, as part of the governmental plan to anticipate the withdrawal of plant protection products in France (PARSADA)

Faced with the likely withdrawal of commercial specialities from use in the short to medium term, France has decided to implement an ambitious action plan to anticipate and avoid withdrawal without alternative solutions. The French wine industry (cniv and ifv) has been heavily involved in this action to define priorities. faced with the risk of the withdrawal of multi-site fungicides (folpel, dithianon, copper) coupled with the probable reduction in single-site fungicide solutions, mildew and black rot have been identified as the priority uses.

Outline for the définition of “Terroirs Viticoles application to the area of El AIjarafe (Seville, Spain)

The grapes producing and wine making regions are différent in their use of agricultural, industrial or agroindustrial means. These means are quite often very original and/or specialised; and lately are also quite competitive. Such means are being defined with increased accuracy in the delimitation and definition of its characteristics (Paneque et al., 1996 a). Human action together with other Elements and Agents involved in the vine growing production (Reyner, 1989) over these means lead to agronomic systems with important characteristics. Finally, the transformation of the vine growing production, through different technologies (Fleet, 1992), results in the creation of products with a different acceptance and economical value in the market.