Terroir 1996 banner
IVES 9 IVES Conference Series 9 La zonazione della Franciacorta: il modello viticolo della DOCG

La zonazione della Franciacorta: il modello viticolo della DOCG

Abstract

[English version below]

La Franciacorta è una piccola regione collinare della provincia di Brescia. Il territorio è molto eterogeneo sia dal punto di vista geologico, che geomorfologico e pedologico. Circa 1.000 ettari sono destinati alla produzione di uve Chardonnay, Pinot bianco e Pinot nero per il vino Franciacorta ottenuto unicamente utilizzando la lunga fermentazione naturale in bottiglia. Al fine della zonazione viticola l’area è stata caratterizzata dal punto di vista climatico, pedologico e vitienologico.
L’inquadramento climatico è stato condotto mediante l’analisi dei dati meteorologici disponibili in relazione alle variabili geografiche e territoriali ad essi correlate (copertura del suolo, giacitura, esposizione, pendenza, distanza dal lago).
L’indagine pedologica condotta nei terreni vitati, ha permesso la produzione di una carta dei suoli in scala 1:25.000 suddivisa in 68 unità cartografiche organizzate in 25 unità di paesaggio. Per l’indagine viticola sono stati individuate 39 parcelle in 26 vigneti rappresentativi della variabilità pedo-climatica e colturale dell ‘area.
In tutte le parcelle e per i tre anni (92, 93 e 94) è stato seguito l’andamento dellefasifenologiche, sono stati rilevati i dati vegeto-produttivi, campionate le dinamiche di maturazione e le caratteristiche qualitativi del mosto. Alla vendemmia è stato raccolto un campione d’uva sufficiente per la microvinificazione.
I vini ottenuti sono stati sottoposti ad analisi sensoriale. L’elaborazione statistica dei dati raccolti, effettuata in tre fasi successive (fase esplorativa, mediante metodi di clustering, per individuare le parcelle con comportamento vegeto-produttivo affine; fase deduttiva per individuare le caratteristiche pedopaesaggistiche comuni ai gruppi definiti nella prima fase, fase validativa, mediante modelli ANOVA, per verificare la significatività statistica delle différente tra le aggregazioni di parcelle) ha consentito di individuare 6 Unità Vocazionali ove il comportamento dei vigneti è risultato diverso negli aspetti vegeto-produttivi, nelle dinamiche della a maturazione nonché nel profilo sensoriale dei vini ottenuti.
La chiave interpretativa di queste aggregazioni è risultata essere legata ai parametri pedologici connessi all’ alimentazione idrica della vite in relazione sia alle possibilità di riserve lungo il profilo radicale, sia alle differenti capacità di drenaggio.

Franciacorta is a small hilly region located in the Brescia province (Northern Italy). Its territory is very heterogeneous both from the geological, geomorphological and pedological point of view. Approximately 1.000 hectares are devoted to yield Chardonnay, Pinot Blanc and noir grapes to produce wine by natural fermentation in bottle. For the viticultural zoning the area has been characterized for the climate, the soils, the viticulture and the enological properties. The climatic variability has been described by the analysis of the available meteorological data in relation to the territorial and geographical variables correlated to it (soil covering, slope, topography, exposition, and distance from the lake).
The pedological survey carried out in the vineyards has hallowed to produce a soil map on a scale of 1:50.000 composed by 68 soil map units organized in 25 landscape units. For the viticultural survey, 39 trial sites representative of soil, climate and agronomical has been chosen. In all the sites for three years (’92, ’93 and ’94) grapevine phenology, yield, and vegetative growth, maturation curves and must composition has been detected. At vintage a sample of grape adequate for microvinification was collected. Wines have been evaluated by sensorial analysis. The statistical data processing carried out by three consecutive steps (exploratory step, by clustering methods, to find the sites with a similar vegetative and productive behavior; deductive step to find the land characteristics which can link the groups defined in the previous step; validation step, by ANOVA models, to verify the statistical significance of the differences detected among the groups) has allowed to define 6 Land Suitability Units, where vineyards resulted different in the vegetative and productive behavior, in the maturation patterns and in sensory properties of the wines. The interpretation key of grouping results was explained by the soil parameters linked to the soil moisture regime both for the available water content and the drainage capacity.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

C.A. PANONT (1), G. COMOLLI (2)

(1) Responsabile ufficio tecnico – Consorzio Vini Franciacorta
(2) Direttore – Consorzio Vini Franciacorta

Keywords

Analisi sensoriale, Cinetiche di maturazione, Franciacorta, Microvinificazioni, Zonazione
Sensory analisys, maturation kinetics, Franciacorta, Microvinificatin, Zoning

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.