terclim by ICS banner
IVES 9 IVES Conference Series 9 Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Abstract

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield. The comparison between sun-exposed and shaded berries revealed an interplay between light exposure and water availability. Furthermore, pre-veraison drought stress resulted in a decrease in titratable acidity, leading to an increase of must pH at harvest time. These results emphasize the impact of early drought events on berry composition, persisting until harvest. This indicates the importance of maintaining optimal water supply during early growing season. The study suggests the potential to conserve water resources by strategically adjusting irrigation intensity during the late growing season.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Patrick Pascal Lehr1*, Charles Obiero2, Markus Keller2, Christian Zörb1

1 University of Hohenheim, Institute of Crop Science, Quality of Plant Products, Stuttgart, Germany
2 Washington State University, Irrigated Agriculture Research and Extension Center, Department of Viticulture and Enology, Prosser, WA, USA

Contact the author*

Keywords

recurrent drought stress, berry quality, phenolic composition, yield, water saving strategies

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison.

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).