terclim by ICS banner
IVES 9 IVES Conference Series 9 Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Abstract

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress. The application of ABA may be an appropriate strategy to facilitate the vine’s adaptations to stress, modulating the production and quality of grapes. Several studies have shown that ABA initiates and regulates ripening in non-climacteric berries such as grapes. One of the ABA’s roles is increasing the production of anthocyanin. There is an emerging field for the development of molecules that act as ABA receptor agonists but have a longer half-life. These agonists are small molecules that can modulate ABA signaling in a timely, dynamic, and exogenous manner. We explored the use of ABA receptor agonists (iSB09 and AMF4) in grapevine cultivars (Bobal and Tempranillo) to induce ABA-like responses that might benefit plant adaptation to drought or grape composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Bono1, Raul Ferrer-Gallego2, Alicia Pou3, Pablo Carbonell-Bejerano3, Leonor Deis2, Jose Miguel Martinez-Zapater3, Diego S. Intrigliolo2 and Pedro L. Rodriguez*1

1 Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia
2 Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valenciana, ES-46113 Moncada (Valencia)

3 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño

Contact the author*

Keywords

abscisic acid, ABA receptor, agonist, abiotic stress, Bobal-Tempranillo

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.