terclim by ICS banner
IVES 9 IVES Conference Series 9 Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Abstract

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress. The application of ABA may be an appropriate strategy to facilitate the vine’s adaptations to stress, modulating the production and quality of grapes. Several studies have shown that ABA initiates and regulates ripening in non-climacteric berries such as grapes. One of the ABA’s roles is increasing the production of anthocyanin. There is an emerging field for the development of molecules that act as ABA receptor agonists but have a longer half-life. These agonists are small molecules that can modulate ABA signaling in a timely, dynamic, and exogenous manner. We explored the use of ABA receptor agonists (iSB09 and AMF4) in grapevine cultivars (Bobal and Tempranillo) to induce ABA-like responses that might benefit plant adaptation to drought or grape composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Bono1, Raul Ferrer-Gallego2, Alicia Pou3, Pablo Carbonell-Bejerano3, Leonor Deis2, Jose Miguel Martinez-Zapater3, Diego S. Intrigliolo2 and Pedro L. Rodriguez*1

1 Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia
2 Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valenciana, ES-46113 Moncada (Valencia)

3 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño

Contact the author*

Keywords

abscisic acid, ABA receptor, agonist, abiotic stress, Bobal-Tempranillo

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Does treatment of grape juice with aspergillopepsin-i influence wine aroma?

Acid aspergillopepsins-i (ap-i) have been suggested for use in winemaking due to their ability to degrade proteins, which reduces haze formation and the necessity for bentonite to achieve protein stability. These endopeptidases cleave non-terminal amino acid bonds of proteins, resulting in their degradation.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Grapevine sensitivity to fungal diseases: use of a combination of terroir cartography and parcel survey

In front of the economic interest and seeking to respect their environment, the wine growers move gradually towards a policy of reasoning their plant health protection. This is why, starting from epidemiologic studies on grapevine pathogens, forecasting models of the risks are developed by research and experimentation bodies.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.