terclim by ICS banner
IVES 9 IVES Conference Series 9 Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Abstract

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress. The application of ABA may be an appropriate strategy to facilitate the vine’s adaptations to stress, modulating the production and quality of grapes. Several studies have shown that ABA initiates and regulates ripening in non-climacteric berries such as grapes. One of the ABA’s roles is increasing the production of anthocyanin. There is an emerging field for the development of molecules that act as ABA receptor agonists but have a longer half-life. These agonists are small molecules that can modulate ABA signaling in a timely, dynamic, and exogenous manner. We explored the use of ABA receptor agonists (iSB09 and AMF4) in grapevine cultivars (Bobal and Tempranillo) to induce ABA-like responses that might benefit plant adaptation to drought or grape composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Bono1, Raul Ferrer-Gallego2, Alicia Pou3, Pablo Carbonell-Bejerano3, Leonor Deis2, Jose Miguel Martinez-Zapater3, Diego S. Intrigliolo2 and Pedro L. Rodriguez*1

1 Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia
2 Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valenciana, ES-46113 Moncada (Valencia)

3 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño

Contact the author*

Keywords

abscisic acid, ABA receptor, agonist, abiotic stress, Bobal-Tempranillo

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Sun exposure is needed for balanced grape ripening and sugar accumulation but is also one of the main drivers for a premature Riesling ageing

Synergistic effect of fumaric acid and chitosan on the inhibition of malolactic fermentation

During wine storage and aging, microorganisms capable of degrading malic acid in an undesirable manner can proliferate.

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).