terclim by ICS banner
IVES 9 IVES Conference Series 9 Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Abstract

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress. The application of ABA may be an appropriate strategy to facilitate the vine’s adaptations to stress, modulating the production and quality of grapes. Several studies have shown that ABA initiates and regulates ripening in non-climacteric berries such as grapes. One of the ABA’s roles is increasing the production of anthocyanin. There is an emerging field for the development of molecules that act as ABA receptor agonists but have a longer half-life. These agonists are small molecules that can modulate ABA signaling in a timely, dynamic, and exogenous manner. We explored the use of ABA receptor agonists (iSB09 and AMF4) in grapevine cultivars (Bobal and Tempranillo) to induce ABA-like responses that might benefit plant adaptation to drought or grape composition.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Mar Bono1, Raul Ferrer-Gallego2, Alicia Pou3, Pablo Carbonell-Bejerano3, Leonor Deis2, Jose Miguel Martinez-Zapater3, Diego S. Intrigliolo2 and Pedro L. Rodriguez*1

1 Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia
2 Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valenciana, ES-46113 Moncada (Valencia)

3 Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Ctra. Burgos Km. 6, 26007 Logroño

Contact the author*

Keywords

abscisic acid, ABA receptor, agonist, abiotic stress, Bobal-Tempranillo

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon.

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.