terclim by ICS banner
IVES 9 IVES Conference Series 9 Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Abstract

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues. Rhizosphere bacterial dynamics and arbuscular mycorrhizal fungi (AMF) colonization have also been investigated during drought and recovery phases. Leaf ecophysiology and water relations were monitored over time, revealing diverse behaviours at severe stress (SS) and recovery (REC) conditions. Overall, combining anatomical, biochemical and gene expression data of stress-associated markers involved in ABA metabolism, osmolytes, antioxidant pathways and xylem features from both bionts, different ABA- or osmotic-dependent responses were observed at SS and REC for NE/3009 and NE/Gravesac combinations. Conversely, the NE/Kober5BB combination appeared to be in a primingstate, displaying higher root ABA content and AM colonization prior to stress imposition, along with a lower scion xylem area. These findings underscore the varied strategies employed by different grafted combinations in drought recovery, considering grapevines not as standalone entities, but rather as holobionts (with their inhabiting microbes) interacting collectively with the surrounding environment.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1,2, Nicola Belfiore1, Amedeo Moine2, Chiara Pagliarani2, Cristina Morabito3, Francesca Secchi3, Loredana Moffa1, Marco Sandrini1, Raffaella Balestrini2, Irene Perrone2, Giorgio Gambino2, Federica Gaiotti1, Danila Cuozzo2,3, Ivana Gribaudo2, Franco Mannini2, Claudio Lovisolo3 and Walter Chitarra1,2*

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

Rootstock, metabarcoding, gas exchange, AMF, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Enhanced polyphenol extraction during Pinot Noir and Cabernet Sauvignon wine making

The quality of red wine depends on the composition of polyphenols influencing wine color and taste. The question is, how much we must fear over extraction, especially of seed tannins, under cool climate conditions. The extraction of polyphenols from grape skins and grape seeds were investigated for the grape varieties Cabernet Sauvignon and Pinot noir

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

The start of Croatian grapevine breeding program

Modern viticulture in Croatia and the world is mainly based on the grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries with the aim of developing resistant varieties possessing high quality level. Coratia is rich in in native grapevine varieties that are the basis of wine production, and are not included in the breeding programs of other countries.