terclim by ICS banner
IVES 9 IVES Conference Series 9 Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Abstract

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues. Rhizosphere bacterial dynamics and arbuscular mycorrhizal fungi (AMF) colonization have also been investigated during drought and recovery phases. Leaf ecophysiology and water relations were monitored over time, revealing diverse behaviours at severe stress (SS) and recovery (REC) conditions. Overall, combining anatomical, biochemical and gene expression data of stress-associated markers involved in ABA metabolism, osmolytes, antioxidant pathways and xylem features from both bionts, different ABA- or osmotic-dependent responses were observed at SS and REC for NE/3009 and NE/Gravesac combinations. Conversely, the NE/Kober5BB combination appeared to be in a primingstate, displaying higher root ABA content and AM colonization prior to stress imposition, along with a lower scion xylem area. These findings underscore the varied strategies employed by different grafted combinations in drought recovery, considering grapevines not as standalone entities, but rather as holobionts (with their inhabiting microbes) interacting collectively with the surrounding environment.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1,2, Nicola Belfiore1, Amedeo Moine2, Chiara Pagliarani2, Cristina Morabito3, Francesca Secchi3, Loredana Moffa1, Marco Sandrini1, Raffaella Balestrini2, Irene Perrone2, Giorgio Gambino2, Federica Gaiotti1, Danila Cuozzo2,3, Ivana Gribaudo2, Franco Mannini2, Claudio Lovisolo3 and Walter Chitarra1,2*

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

Rootstock, metabarcoding, gas exchange, AMF, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

Effect of bleaching with different agents on protein hydrolysate characteristics

High temperatures can reduce the phenolic content of grapes, especially anthocyanins and copigments involved in colour stabilisation of red wines [1]. This could make it difficult to maintain stable colour during storage [2].

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.