terclim by ICS banner
IVES 9 IVES Conference Series 9 Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Abstract

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues. Rhizosphere bacterial dynamics and arbuscular mycorrhizal fungi (AMF) colonization have also been investigated during drought and recovery phases. Leaf ecophysiology and water relations were monitored over time, revealing diverse behaviours at severe stress (SS) and recovery (REC) conditions. Overall, combining anatomical, biochemical and gene expression data of stress-associated markers involved in ABA metabolism, osmolytes, antioxidant pathways and xylem features from both bionts, different ABA- or osmotic-dependent responses were observed at SS and REC for NE/3009 and NE/Gravesac combinations. Conversely, the NE/Kober5BB combination appeared to be in a primingstate, displaying higher root ABA content and AM colonization prior to stress imposition, along with a lower scion xylem area. These findings underscore the varied strategies employed by different grafted combinations in drought recovery, considering grapevines not as standalone entities, but rather as holobionts (with their inhabiting microbes) interacting collectively with the surrounding environment.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1,2, Nicola Belfiore1, Amedeo Moine2, Chiara Pagliarani2, Cristina Morabito3, Francesca Secchi3, Loredana Moffa1, Marco Sandrini1, Raffaella Balestrini2, Irene Perrone2, Giorgio Gambino2, Federica Gaiotti1, Danila Cuozzo2,3, Ivana Gribaudo2, Franco Mannini2, Claudio Lovisolo3 and Walter Chitarra1,2*

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

Rootstock, metabarcoding, gas exchange, AMF, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The grapevine single-berry clock, practical tools and outcomes 

The dynamic sequence of physiological events along the three-months of berry development from anthesis to ripe stage has been thoroughly investigated. Most studies were performed on average samples, taking care to crush enough fruits to fairly represent the overall trend of the future harvest. However, phenological stages like 30% caps off (EL25) highlights the asynchronous nature of this population. Consequently, softening, onset of sugar accumulation and coloration were melted by asynchrony in a developmental mumbo jumbo, until their respective timing could be clarified by single berries approaches.

Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

To study the copigmentation between different wine flavonols (myricetin, quercetin, kaempferol, isorhamnetin and syringetin 3-O-glucosides) and malvidin

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Natural glycolipids for the control of spoilage organisms in red wine

A natural glycolipid mixture obtained from the edible mushroom dacryopinax spathularia (“glycolipids”) is known to be an effective and approved antimicrobial treatment in non-alcoholic beverages at concentrations ranging from 5 – 100 mg/l. It has found a place alongside DMDC for the provision of microbial stability in soft drinks. These properties make the natural and sustainably produced glycolipids a promising candidate for the supplementation or replacement of SO2 in different winemaking processes.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.