terclim by ICS banner
IVES 9 IVES Conference Series 9 Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Abstract

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues. Rhizosphere bacterial dynamics and arbuscular mycorrhizal fungi (AMF) colonization have also been investigated during drought and recovery phases. Leaf ecophysiology and water relations were monitored over time, revealing diverse behaviours at severe stress (SS) and recovery (REC) conditions. Overall, combining anatomical, biochemical and gene expression data of stress-associated markers involved in ABA metabolism, osmolytes, antioxidant pathways and xylem features from both bionts, different ABA- or osmotic-dependent responses were observed at SS and REC for NE/3009 and NE/Gravesac combinations. Conversely, the NE/Kober5BB combination appeared to be in a primingstate, displaying higher root ABA content and AM colonization prior to stress imposition, along with a lower scion xylem area. These findings underscore the varied strategies employed by different grafted combinations in drought recovery, considering grapevines not as standalone entities, but rather as holobionts (with their inhabiting microbes) interacting collectively with the surrounding environment.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luca Nerva1,2, Nicola Belfiore1, Amedeo Moine2, Chiara Pagliarani2, Cristina Morabito3, Francesca Secchi3, Loredana Moffa1, Marco Sandrini1, Raffaella Balestrini2, Irene Perrone2, Giorgio Gambino2, Federica Gaiotti1, Danila Cuozzo2,3, Ivana Gribaudo2, Franco Mannini2, Claudio Lovisolo3 and Walter Chitarra1,2*

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy
3 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy

Contact the author*

Keywords

Rootstock, metabarcoding, gas exchange, AMF, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

The concept of terroir: what place for microbiota?

Microbes play key roles on crop nutrient availability via biogeochemical cycles, rhizosphere interactions with roots as well as on plant growth and health. Recent advances in technologies, such as High Throughput Sequencing Techniques, allowed to gain deeper insight on the structure of bacterial and fungal communities associated with soil, rhizosphere and plant phyllosphere. Over the past 10 years, numerous scientific studies have been carried out on the microbial component of the vineyard. Whether the soil or grape compartments have been taken into account, many studies agree on the evidence of regional delineations of microbial communities, that may contribute to regional wine characteristics and typicity. Some authors proposed the term “microbial terroir” including “yeast terroir” for grapes to describe the connection between microbial biogeography and regional wine characteristics. Many factors are involved in terroir including climate, soil, cultivar and human practices as well as their interactions. Studies considering “microbial terroir” greatly contributed to improve our knowledge on factors that shape the vineyard microbial structure and diversity. However, the potential impact of “microbial terroir” on wine composition has yet not received strong scientific evidence and many questions remain to be addressed, related to the functional characterization of the microbial community and its impact on plant physiology and grape composition, the origins and interannual stability of vineyard microbiota, as well as their impact on wine sensorial attributes. The presentation will give an overview on the role of microbiota as a terroir component and will highlight future perspectives and challenges on this key subject for the wine industry.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences