Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change projections in serbian wine-growing regions

Climate change projections in serbian wine-growing regions

Abstract

Changes in bioclimatic indices in wine-growing region of Serbia are analyzed under the RCP 8.5 IPCC scenario. Results of a global climate model are dynamically downscaled on a horizontal resolution of about 8 km, using a regional model NMMB for a period 1971-2100. Statistical bias correction of regional climate model’s daily outputs of precipitation, minimum and maximum temperature are done for an entire territory of Serbia, using a dataset of daily observation on a regular 8 km grid. Four of bioclimatic indices widely used in viticulture were calculated from the observations in the period 1971-2000 and from the bias corrected model output for two periods in the future, 2011-2040 and 2071-2100.

Results show temperature increase, especially during the vegetation period. By the end of the century precipitation amount during the growing season will significantly drop, alongside with a change of the intramural precipitation distribution towards the Mediterranean climate characteristics. Consequently, climate characteristics of Serbian wine-growing regions will drastically change towards a very warm and moderately dry climate categories.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Mirjam VUJADINOVIC (1,2), Ana VUKOVIC (1,2,) Darko JAKSIC (3), Vladimir DJURDJEVIC (4,2), Mirjana RUML (1), Zorica RANKOVIC-VASIC (1), Zoran PRZIC (1), Branislava SIVCEV (1), Nebojsa MARKOVIC (1), Bojan CVETKOVIC (2), Pierfederico LA NOTTE (5)

(1) Department of Viticulture, Institute of Horticulture, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Nemanjina 6., Serbia
(2) South East European Climate Change Center, RHMSS, 11000 Belgrade, Bulevar Oslobodjenja 8, Serbia
(3) Ministry of Agriculture and Environmental Protection, 11000 Belgrade, Nemanjina 22-26, Serbia
(4) Institute of Meteorology, Faculty of Physics, 11000 Belgrade, Dobracina 16, Serbia
(5) Institute for Sustainable Plant Protection, National Research Council of Italy, I-70126 Bari, Via Zmendola 122/D, Italy

Contact the author

Keywords

climate change, wine-growing regions, Serbia, regional climate model, high resolution, viticulture

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

New insights about sensory contribution of grape stems during winemaking: role of astilbin, a sweet polyphenol

In this video recording of the IVES science meeting 2025, Marie Le Scanff (University of Bordeaux, UMR 1366 Oenologie, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about the sensory contribution of grape stems during winemaking and about the role of astilbin, a sweet polyphenol. This presentation is based on an original article accessible for free on OENO One and on a technical article published on IVES Technical Reviews.

Evaluation of new fem grapevine varieties resistant to the main fungal diseases

Context and purpose of the study. The genetic improvement of grapevines at the Edmund Mach Foundation (FEM) has evolved significantly since its inception, and its philosophy on sustainable viticulture through crossbreeding techniques aligns with the urgent need to reduce chemical use in agriculture.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.