terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Abstract

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture. The aim of the present study is to identify bacterial and fungal taxa naturally present in vineyard soil and grapevine leaves and significantly more abundant in plots with low susceptibility to downy mildew (DM), susceptibility being defined by the intensity and frequency of DM symptoms over several years. Seven pairs of vineyard plots with contrasting susceptibility to DM were selected on the basis of a long-term epidemiological survey conducted in the Bordeaux region by the IFV. In each plot, we sampled young leaves (at phenological stage of 2-3 spreading leaves) and surface soil (top 5 cm) before the first fungicide treatments of the growing season. We used metabarcoding approaches to explore the entire microbial community of the samples. Up to 1974 and 769 taxonomic units of bacteria and fungi respectively were identified. Using differential abundance analyses, we could identify taxa that were significantly more abundant in plots of vines with low susceptibility to DM. As perspectives, the antagonistic activity of these taxa will be studied experimentally to develop microbial biocontrol of downy mildew and move viticulture towards pesticide-free viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Paola Fournier1,2,3*, Lucile Pellan1, Aarti Jaswa1,4, Jessica Vallance1, Emilie Chancerel2, Olivier Bonnard2, Marc Raynal5, Christian Debord5, Simon Labarthe2, Laurent Deliere1, François Delmotte1, Patrice This3, Corinne Vacher2

1INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave-d’Ornon, France
2INRAE, Univ Bordeaux, BioGeCo, 33610 Cestas, France
3INRAE, CIRAD, Univ Montpellier, Institut AGRO, AGAP institut, 34398 Montpellier, France
4Univ Bordeaux, UMR oenologie, INRAE, Bx INP, Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon ,France
5IFV, 33290 Blanquefort, France

Contact the author*

Keywords

Plasmopara viticola, phyllosphere, pest management, sustainable viticulture, grape-associated microorganisms

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The temporal sensory interaction between 3-Mercaptohexanol, 3-Mercaptohexyl Acetate and Athanethiol using trata

Volatile sulphur compounds are a group of impact odorants with low odour thresholds that can contribute both positively and negatively to wine aroma. The varietal thiols, 3MH and 3MHA, are known to contribute positive tropical aromas to white wines and are most abundant in Sauvignon Blanc wines. The group of compounds contributing negative aromas are known as reductive sulphur compounds (RSCs) as they add a reductive aroma of asparagus, cooked vegetables and rotten egg to wines. All these compounds play a part in and are a result of the sulphur pathway in the yeast cell during fermentation and therefore attempting to increase the concentration of the varietal thiols may directly influence the concentration of the RSCs. The varietal thiols and the low molecular weight RSCs are highly volatile and therefore their sensory perception can change rapidly over time.

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.