terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Abstract

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture. The aim of the present study is to identify bacterial and fungal taxa naturally present in vineyard soil and grapevine leaves and significantly more abundant in plots with low susceptibility to downy mildew (DM), susceptibility being defined by the intensity and frequency of DM symptoms over several years. Seven pairs of vineyard plots with contrasting susceptibility to DM were selected on the basis of a long-term epidemiological survey conducted in the Bordeaux region by the IFV. In each plot, we sampled young leaves (at phenological stage of 2-3 spreading leaves) and surface soil (top 5 cm) before the first fungicide treatments of the growing season. We used metabarcoding approaches to explore the entire microbial community of the samples. Up to 1974 and 769 taxonomic units of bacteria and fungi respectively were identified. Using differential abundance analyses, we could identify taxa that were significantly more abundant in plots of vines with low susceptibility to DM. As perspectives, the antagonistic activity of these taxa will be studied experimentally to develop microbial biocontrol of downy mildew and move viticulture towards pesticide-free viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Paola Fournier1,2,3*, Lucile Pellan1, Aarti Jaswa1,4, Jessica Vallance1, Emilie Chancerel2, Olivier Bonnard2, Marc Raynal5, Christian Debord5, Simon Labarthe2, Laurent Deliere1, François Delmotte1, Patrice This3, Corinne Vacher2

1INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave-d’Ornon, France
2INRAE, Univ Bordeaux, BioGeCo, 33610 Cestas, France
3INRAE, CIRAD, Univ Montpellier, Institut AGRO, AGAP institut, 34398 Montpellier, France
4Univ Bordeaux, UMR oenologie, INRAE, Bx INP, Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon ,France
5IFV, 33290 Blanquefort, France

Contact the author*

Keywords

Plasmopara viticola, phyllosphere, pest management, sustainable viticulture, grape-associated microorganisms

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Viticulture and climate: from global to local

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).