terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Abstract

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture. The aim of the present study is to identify bacterial and fungal taxa naturally present in vineyard soil and grapevine leaves and significantly more abundant in plots with low susceptibility to downy mildew (DM), susceptibility being defined by the intensity and frequency of DM symptoms over several years. Seven pairs of vineyard plots with contrasting susceptibility to DM were selected on the basis of a long-term epidemiological survey conducted in the Bordeaux region by the IFV. In each plot, we sampled young leaves (at phenological stage of 2-3 spreading leaves) and surface soil (top 5 cm) before the first fungicide treatments of the growing season. We used metabarcoding approaches to explore the entire microbial community of the samples. Up to 1974 and 769 taxonomic units of bacteria and fungi respectively were identified. Using differential abundance analyses, we could identify taxa that were significantly more abundant in plots of vines with low susceptibility to DM. As perspectives, the antagonistic activity of these taxa will be studied experimentally to develop microbial biocontrol of downy mildew and move viticulture towards pesticide-free viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Paola Fournier1,2,3*, Lucile Pellan1, Aarti Jaswa1,4, Jessica Vallance1, Emilie Chancerel2, Olivier Bonnard2, Marc Raynal5, Christian Debord5, Simon Labarthe2, Laurent Deliere1, François Delmotte1, Patrice This3, Corinne Vacher2

1INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave-d’Ornon, France
2INRAE, Univ Bordeaux, BioGeCo, 33610 Cestas, France
3INRAE, CIRAD, Univ Montpellier, Institut AGRO, AGAP institut, 34398 Montpellier, France
4Univ Bordeaux, UMR oenologie, INRAE, Bx INP, Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon ,France
5IFV, 33290 Blanquefort, France

Contact the author*

Keywords

Plasmopara viticola, phyllosphere, pest management, sustainable viticulture, grape-associated microorganisms

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities