terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Abstract

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture. The aim of the present study is to identify bacterial and fungal taxa naturally present in vineyard soil and grapevine leaves and significantly more abundant in plots with low susceptibility to downy mildew (DM), susceptibility being defined by the intensity and frequency of DM symptoms over several years. Seven pairs of vineyard plots with contrasting susceptibility to DM were selected on the basis of a long-term epidemiological survey conducted in the Bordeaux region by the IFV. In each plot, we sampled young leaves (at phenological stage of 2-3 spreading leaves) and surface soil (top 5 cm) before the first fungicide treatments of the growing season. We used metabarcoding approaches to explore the entire microbial community of the samples. Up to 1974 and 769 taxonomic units of bacteria and fungi respectively were identified. Using differential abundance analyses, we could identify taxa that were significantly more abundant in plots of vines with low susceptibility to DM. As perspectives, the antagonistic activity of these taxa will be studied experimentally to develop microbial biocontrol of downy mildew and move viticulture towards pesticide-free viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Paola Fournier1,2,3*, Lucile Pellan1, Aarti Jaswa1,4, Jessica Vallance1, Emilie Chancerel2, Olivier Bonnard2, Marc Raynal5, Christian Debord5, Simon Labarthe2, Laurent Deliere1, François Delmotte1, Patrice This3, Corinne Vacher2

1INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave-d’Ornon, France
2INRAE, Univ Bordeaux, BioGeCo, 33610 Cestas, France
3INRAE, CIRAD, Univ Montpellier, Institut AGRO, AGAP institut, 34398 Montpellier, France
4Univ Bordeaux, UMR oenologie, INRAE, Bx INP, Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon ,France
5IFV, 33290 Blanquefort, France

Contact the author*

Keywords

Plasmopara viticola, phyllosphere, pest management, sustainable viticulture, grape-associated microorganisms

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.