terclim by ICS banner
IVES 9 IVES Conference Series 9 Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Abstract

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses. In response to pathogen attacks, the grapevine is capable of inducing or inhibiting various pathways related to its traits of tolerance or susceptibility. These responses depend on both the pathogen genotype and the plant genotype. Similar behaviors have been described for the relationship between the plant and beneficial microorganisms. To illustrate these biotic interactions, the relationship between grapevine cultivars and a fungal pathogen associated to the Botryosphaeriaceae dieback, Neofusicoccum parvum, will first be described. Secondly, this interaction could itself be changed by the addition of biocontrol agents (bacteria, or fungi, or oomycetes), sole or in combination. Finally, this is a major challenge to determine the best balance between the vigor and health of the grapevine, the control of the pathogen attack and the damage caused, and the use of biocontrol agents.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florence Fontaine1*

1 Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes USC INRAE 1488, Chaire Maldive, 51100 Reims, France

Contact the author*

Keywords

biological control aspect, Botryosphaeriaceae species, fungal pathogen, plant tolerance, pathogenicity factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.

Unravelling the mystery of drought tolerance confered by rootstocks

Climate change will increase the frequency of water deficit experienced in certain european regions, due to increased evapotranspiration and reduced rainfall during the growing cycle. We therefore need to find ways of adaption, including the use of more drought-tolerant planting material. In addition to the varieties used as grafts and involved in the wine ypicity of our wines, rootstocks selection is a relevant way of adapting to more restrictive environmental conditions.