terclim by ICS banner
IVES 9 IVES Conference Series 9 Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Abstract

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses. In response to pathogen attacks, the grapevine is capable of inducing or inhibiting various pathways related to its traits of tolerance or susceptibility. These responses depend on both the pathogen genotype and the plant genotype. Similar behaviors have been described for the relationship between the plant and beneficial microorganisms. To illustrate these biotic interactions, the relationship between grapevine cultivars and a fungal pathogen associated to the Botryosphaeriaceae dieback, Neofusicoccum parvum, will first be described. Secondly, this interaction could itself be changed by the addition of biocontrol agents (bacteria, or fungi, or oomycetes), sole or in combination. Finally, this is a major challenge to determine the best balance between the vigor and health of the grapevine, the control of the pathogen attack and the damage caused, and the use of biocontrol agents.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florence Fontaine1*

1 Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes USC INRAE 1488, Chaire Maldive, 51100 Reims, France

Contact the author*

Keywords

biological control aspect, Botryosphaeriaceae species, fungal pathogen, plant tolerance, pathogenicity factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A deep learning object detection approach for smart pest identification in vineyards

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector.

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).

Influence of precipitation on the phenolic and isotopic composition of Vitis Vinifera red wines

This study investigates how precipitation from November to February during each harvest year, influence the phenolic and isotopic profiles of red wines, particularly focusing on trans-resveratrol, total phenolic compounds, and carbon and oxygen isotopes (¹³C/¹²C and ¹⁸O/¹⁶O).