terclim by ICS banner
IVES 9 IVES Conference Series 9 Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Abstract

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses. In response to pathogen attacks, the grapevine is capable of inducing or inhibiting various pathways related to its traits of tolerance or susceptibility. These responses depend on both the pathogen genotype and the plant genotype. Similar behaviors have been described for the relationship between the plant and beneficial microorganisms. To illustrate these biotic interactions, the relationship between grapevine cultivars and a fungal pathogen associated to the Botryosphaeriaceae dieback, Neofusicoccum parvum, will first be described. Secondly, this interaction could itself be changed by the addition of biocontrol agents (bacteria, or fungi, or oomycetes), sole or in combination. Finally, this is a major challenge to determine the best balance between the vigor and health of the grapevine, the control of the pathogen attack and the damage caused, and the use of biocontrol agents.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florence Fontaine1*

1 Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes USC INRAE 1488, Chaire Maldive, 51100 Reims, France

Contact the author*

Keywords

biological control aspect, Botryosphaeriaceae species, fungal pathogen, plant tolerance, pathogenicity factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.