terclim by ICS banner
IVES 9 IVES Conference Series 9 Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Abstract

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses. In response to pathogen attacks, the grapevine is capable of inducing or inhibiting various pathways related to its traits of tolerance or susceptibility. These responses depend on both the pathogen genotype and the plant genotype. Similar behaviors have been described for the relationship between the plant and beneficial microorganisms. To illustrate these biotic interactions, the relationship between grapevine cultivars and a fungal pathogen associated to the Botryosphaeriaceae dieback, Neofusicoccum parvum, will first be described. Secondly, this interaction could itself be changed by the addition of biocontrol agents (bacteria, or fungi, or oomycetes), sole or in combination. Finally, this is a major challenge to determine the best balance between the vigor and health of the grapevine, the control of the pathogen attack and the damage caused, and the use of biocontrol agents.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florence Fontaine1*

1 Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes USC INRAE 1488, Chaire Maldive, 51100 Reims, France

Contact the author*

Keywords

biological control aspect, Botryosphaeriaceae species, fungal pathogen, plant tolerance, pathogenicity factors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Drought effect on aromatic and phenolic potential of seven recovered grapevine varieties in Castilla-La Mancha region (Spain)

The effects of climate change are seriously affecting the quality of wine grapes. High temperatures and drought cause imbalances in the chemical composition of grapes. The result is overripe grapes with low acidity and high sugar content, which produce wines with excessive alcohol content, lacking in freshness and not very aromatic. As a consequence, the search of varieties with capacity of produce quality grapes in adverse climate conditions is a good alternative to preserve the sustainability of vineyards. In this work, quality parameters of seven Vitis vinifera L. cultivars (five whites and two reds) recently recovered from extinction and grown under two different hydric regimes (rainfed and irrigated) were analyzed during the 2020 vintage. At harvest time, weight of 100 berries, must physicochemical parameters (brix degree, total acidity, malic acid, pH), and carbon and oxygen isotope ratios (δ13C, δ18O) were determined. Subsequently, varietal aroma potential index (IPAv) and total polyphenol index (TPI) were analyzed. Quality parameters, IPAv and TPI, showed significant differences between varieties and water regimes. Both red varieties, Moribel and Tinto Fragoso, stood out for their high aromatic and phenolic potential, which was higher under rainfed regime. Regarding to white varieties, Montonera del Casar and Jarrosuelto stood out in terms of varietal aroma potential. Montonera del Casar high acidity in its musts and Jarrosuelto showed the highest berry weights.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).