terclim by ICS banner
IVES 9 IVES Conference Series 9 Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Abstract

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes. A gene set enrichment analysis indicated several over-represented categories upon infection, with a general down-regulation of those genes related to CW organization and pectin modification, mostly in the resistant genotype. Within the down-regulated CWMEs, Pectin Methyl-Esterase (PME) genes were found highly represented. Unlike, VviPME10 was significantly induced upon infection and was further characterized since its putative ortholog in Arabidopsis was associated with resistance to Bc. VviPME10promoter hosts several predicted binding sites for VviWRKY3, a defense-associated transcription factor, as highlighted by DAP-seq analysis. This evidence is under confirmation by luciferase assays. In addition, the artificial inoculation with Bc of leaves from six VviPME10 knock-out (KO) edited lines showed significantly larger lesion areas when compared to control plants at 5 dpi. Together, these results suggest that pectin modification, mediated by VviPME10, plays an important role in the grapevine response to Bc.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jorge Lagrèze1,2, Antonio Santiago Pajuelo3, Lorenza Dalla Costa2, Daniele Coculo4, Gabriele Magon5, Luis Orduña3, Gaston Pizzio3, Chen Zhang3, Mickael Malnoy2, Vincenzo Lionetti4, Alessandro Vannozzi5, José Tomás Matus3, Claudio Moser2, Giulia Malacarne2*

1 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy
2 Research and Innovation Center, E. Mach Foundation, Via E. Mach 1, 38098, San Michele all’Adige (Trento), Italy
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
4 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
5 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy

Contact the author*

Keywords

Botrytis cinerea, transcriptomics, DAP-seq analysis, Cell wall, grapevine pectin methyl-esterase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aromatic maturity is a cornerstone of terroir expression in red wine

In this video recording of the IVES science meeting 2023, Stéphanie Marchand (University of Bordeaux, ISVV, INRAE, UMR 1366 OENOLOGIE, Villenave d’Ornon, France) speaks about the aromatic maturity as a cornerstone of terroir expression in red wine. This presentation is based on an original article accessible for free on OENO One.

Chemistry and analysis of key volatile compounds of wine and their precursors in grape

A relatively small number of the many volatile substances of wine, often present at trace
concentrations, are considered as key volatile compounds. These compounds often exist in grapes
under poorly odoriferous or non volatile forms as aroma precursors.

Pedoclimatic comparison of three viticultural areas of Italy devoted to high-quality Aglianico and Cabernet Sauvignon production

Aim: The study aims to show how different pedo-climatic conditions (past, present, and future) in three Italian sites at different latitudes (from center to southern), affect the adaptation of two red grapevine cultivars: Aglianico and Cabernet Sauvignon.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Comparison of fortified, sfursat and passito winemaking techniques for the enhancement of the oenological potential of the black grape cultivar Moscato nero d’Acqui (Vitis vinifera L.)

One of the key factors of the economical development of viticulture and wine industry in specific limited areas is the exploitation of ancient, local grape varieties. Therefore, in recent years the growing interest to rediscover minor varieties, previously cultivated, has promoted many studies. With this regard, the focus of this study was the Vitis vinifera L. cultivar Moscato nero d’Acqui, nowadays found only in old vineyards in the Acqui zone (North-West Italy). In particular, the aims of this work were: i) to investigate secondary metabolites profile of the grapes, and ii) to evaluate the attitude to the production of special wines.