terclim by ICS banner
IVES 9 IVES Conference Series 9 Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Abstract

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes. A gene set enrichment analysis indicated several over-represented categories upon infection, with a general down-regulation of those genes related to CW organization and pectin modification, mostly in the resistant genotype. Within the down-regulated CWMEs, Pectin Methyl-Esterase (PME) genes were found highly represented. Unlike, VviPME10 was significantly induced upon infection and was further characterized since its putative ortholog in Arabidopsis was associated with resistance to Bc. VviPME10promoter hosts several predicted binding sites for VviWRKY3, a defense-associated transcription factor, as highlighted by DAP-seq analysis. This evidence is under confirmation by luciferase assays. In addition, the artificial inoculation with Bc of leaves from six VviPME10 knock-out (KO) edited lines showed significantly larger lesion areas when compared to control plants at 5 dpi. Together, these results suggest that pectin modification, mediated by VviPME10, plays an important role in the grapevine response to Bc.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jorge Lagrèze1,2, Antonio Santiago Pajuelo3, Lorenza Dalla Costa2, Daniele Coculo4, Gabriele Magon5, Luis Orduña3, Gaston Pizzio3, Chen Zhang3, Mickael Malnoy2, Vincenzo Lionetti4, Alessandro Vannozzi5, José Tomás Matus3, Claudio Moser2, Giulia Malacarne2*

1 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy
2 Research and Innovation Center, E. Mach Foundation, Via E. Mach 1, 38098, San Michele all’Adige (Trento), Italy
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
4 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
5 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy

Contact the author*

Keywords

Botrytis cinerea, transcriptomics, DAP-seq analysis, Cell wall, grapevine pectin methyl-esterase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Mapping and tracking canopy size with VitiCanopy

Understanding vineyard variability to target management strategies, apply inputs efficiently and deliver consistent grape quality to the winery is essential. However, despite inherent vineyard variability, the majority are managed as if they are uniform. VitiCanopy is a simple, grower-friendly tool for precision/digital viticulture that allows users to collect and interpret objective spatial information about vineyard performance. After four years of field and market research, an upgraded VitiCanopy has been created to achieve a more streamlined, technology-assisted vine monitoring tool that provides users with a set of superior new features, which could significantly improve the way users monitor their grapevines. These new features include:
• New user interface
• User authentication
• Batch analysis of multiple images
• Ease the learning curve through enhanced help features
• Reporting via the creation of colour maps that will allow users to assess the spatial differences in canopies within a vineyard.
Use-case examples are presented to demonstrate the quantification and mapping of vineyard variability through objective canopy measurements, ground-truthing of remotely sensed measurements, monitoring of crop conditions, implementation of disease and water management decisions as well as creating a history of each site to forecast quality. This intelligent tool allows users to manage grapevines and make informed management choices to achieve the desired production targets and remain profitable.

Evaluation of the enological potential of red grapes in southern Brazil

The Campanha Gaúcha is located in the pampa biome and has unique characteristics, as it is the hottest producing region with the lowest volume of rain in Southern Brazil. Furthermore, the large extensions of flat or low-sloping areas, harsh winters and great sunshine during the ripening period, made this the second largest producer of fine wines in Brazil.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.

Management of water status in vineyards: meta-analysis of its effects on yield and grape composition

Mediterranean vineyards have been traditionally grown under rainfed conditions, but in recent decades the irrigated area has increased significantly, seeking to minimize the adverse effects of severe water stress on grape quality and yield. Given the large area occupied by vineyards, and the increasing scarcity of water resources, it is necessary to develop strategies for the optimization and efficient use of water to reduce the risk of its overexploitation. The present study aims at valorizing previous knowledge generated in different research projects by means of a meta-analysis of the effects of water status management on vineyard performance.