terclim by ICS banner
IVES 9 IVES Conference Series 9 Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Abstract

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes. A gene set enrichment analysis indicated several over-represented categories upon infection, with a general down-regulation of those genes related to CW organization and pectin modification, mostly in the resistant genotype. Within the down-regulated CWMEs, Pectin Methyl-Esterase (PME) genes were found highly represented. Unlike, VviPME10 was significantly induced upon infection and was further characterized since its putative ortholog in Arabidopsis was associated with resistance to Bc. VviPME10promoter hosts several predicted binding sites for VviWRKY3, a defense-associated transcription factor, as highlighted by DAP-seq analysis. This evidence is under confirmation by luciferase assays. In addition, the artificial inoculation with Bc of leaves from six VviPME10 knock-out (KO) edited lines showed significantly larger lesion areas when compared to control plants at 5 dpi. Together, these results suggest that pectin modification, mediated by VviPME10, plays an important role in the grapevine response to Bc.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jorge Lagrèze1,2, Antonio Santiago Pajuelo3, Lorenza Dalla Costa2, Daniele Coculo4, Gabriele Magon5, Luis Orduña3, Gaston Pizzio3, Chen Zhang3, Mickael Malnoy2, Vincenzo Lionetti4, Alessandro Vannozzi5, José Tomás Matus3, Claudio Moser2, Giulia Malacarne2*

1 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy
2 Research and Innovation Center, E. Mach Foundation, Via E. Mach 1, 38098, San Michele all’Adige (Trento), Italy
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
4 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
5 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy

Contact the author*

Keywords

Botrytis cinerea, transcriptomics, DAP-seq analysis, Cell wall, grapevine pectin methyl-esterase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.)