terclim by ICS banner
IVES 9 IVES Conference Series 9 Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Cell wall remodeling mediated by specific PME genes plays a role in grapevine response to Botrytis cinerea

Abstract

Botrytis cinerea (Bc) is one of the main pathogens affecting the cultivated grapevine. A key role in grapevine tissue colonization is played by cell wall (CW) remodeling driven by CW Modifying Enzymes (CWMEs), expressed both by the host and the pathogen. Their action can impact CW integrity and trigger specific immune signaling, thus influencing Bc infection outcome. To further characterize the role of the CW in the grapevine response to Bc, two contrasting genotypes in their resistance to the fungus were artificially inoculated at full bloom. RNA-seq analysis and biochemical characterization of the CW and its modification in samples collected at 24 hours post-inoculation highlighted significant differences between genotypes. A gene set enrichment analysis indicated several over-represented categories upon infection, with a general down-regulation of those genes related to CW organization and pectin modification, mostly in the resistant genotype. Within the down-regulated CWMEs, Pectin Methyl-Esterase (PME) genes were found highly represented. Unlike, VviPME10 was significantly induced upon infection and was further characterized since its putative ortholog in Arabidopsis was associated with resistance to Bc. VviPME10promoter hosts several predicted binding sites for VviWRKY3, a defense-associated transcription factor, as highlighted by DAP-seq analysis. This evidence is under confirmation by luciferase assays. In addition, the artificial inoculation with Bc of leaves from six VviPME10 knock-out (KO) edited lines showed significantly larger lesion areas when compared to control plants at 5 dpi. Together, these results suggest that pectin modification, mediated by VviPME10, plays an important role in the grapevine response to Bc.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Jorge Lagrèze1,2, Antonio Santiago Pajuelo3, Lorenza Dalla Costa2, Daniele Coculo4, Gabriele Magon5, Luis Orduña3, Gaston Pizzio3, Chen Zhang3, Mickael Malnoy2, Vincenzo Lionetti4, Alessandro Vannozzi5, José Tomás Matus3, Claudio Moser2, Giulia Malacarne2*

1 Center Agriculture Food Environment (C3A), University of Trento/Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all’Adige (TN), Italy
2 Research and Innovation Center, E. Mach Foundation, Via E. Mach 1, 38098, San Michele all’Adige (Trento), Italy
3 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, Valencia, Spain
4 Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
5 Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16 – 35020 Legnaro (PD), Italy

Contact the author*

Keywords

Botrytis cinerea, transcriptomics, DAP-seq analysis, Cell wall, grapevine pectin methyl-esterase

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

Wine aging : a bottleneck Story ?

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation.

Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

This study evaluates the effect of microwave treatment in grape maceration on the content of free and glycosidically bound varietal compounds) of must and wine and on the overall aroma of wines produced in the presence and absence of SO2.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.