terclim by ICS banner
IVES 9 IVES Conference Series 9 Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Abstract

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths. Yet, the scion effect on the spectra remains dominant over the rootstock effect, which is also the case for agronomic traits. Using NIRS data on dried leaves, which were found to best capture the rootstock effect compared to measurements on wood or fresh leaves, spectral wavelengths specific to the rootstock effect could be identified.
Predictions at the vine level carried out on twenty-eight phenotypic traits showed that those related to phenology and vigor being were better predicted. Three spectral regions were consistently identified as contributing to predictions and to differences between scion/rootstock combinations. Using data from these regions yielded predictive models as accurate as those built with the entire spectral range, underlining that NIRS capture useful information related to the combination rootstock/scion which opens prospects towards the possibility of using this methodology in a breeding context.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marie-Gabrielle Harribey1, Jean-Pascal Tandonnet2, Marine Morel2, Virginie Bouckenooghe3,4, Elisa Marguerit2, Vincent Segura4,5, Nathalie Ollat2*

1 UMR BIOGECO, Univ. Bordeaux, INRAE, CIRAD, 33 Cestas, France
2 EGFV, Univ.Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
3 IFV, 30240, Le Grau du Roi, France
4 UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
5 UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

NIRS, phenomic prediction, rootstock, scion/rootstock interaction, field phenotyping

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior.

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.