terclim by ICS banner
IVES 9 IVES Conference Series 9 Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Abstract

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydosporaPhaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines. Here, we conducted metabolic profiling and untargeted/ targeted metabolomics to gather more insights into the molecular and biochemical mechanisms responsible for the onset of symptoms. Ultra-High Performance Liquid Chromatography (UHPLC-qTOF-MS/MS), Gas Chromatograph-Quadrupole Time of Flight Mass Spectrometry (GC-qTOF-MS/MS), and Liquid Cromatography (LC-MS/MS) enabled the identification of putative markers of symptomatology regarding hormonal regulation, primary and secondary metabolisms. Abscisic acid, jasmonates, and specific amino acids and sugars decrease in harvest-stage fruits from symptomatic grapevines, in contrast with the accumulation of a wide variety of phenylpropanoids (e.g., procyanidin B1, caftaric acid, resveratrol) among others. Secondary metabolism was more strongly remodelled indicating a partitioning of carbon allocated to defence-related metabolism. RNA extraction and sequencing are being conducted to integrate these metabolic results with molecular data. This study may contribute to developing a model regarding the development of Esca symptoms in an attempt to mitigate the worldwide impact of this complex disease.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Rute Amaro1*, Rita Pacheco2,3, Carla António4, Cecília Rego5, Lisete Sousa6, Paula Lopes1,7, Axel Mithöfer8, Ana Margarida Fortes1

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
2 Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
3 Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4 Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
5 LEAF – Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
6 Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
7 DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Vila Real, Portugal
8 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

Contact the author*

Keywords

Esca disease, Hormonal profiling, Primary metabolism, Phenylpropanoid pathways, RNA sequencing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Integration of the AOC and terroir concepts by future professionals of the international wine sector

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector.

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

Effect of partial net shading on the temperature and radiation in the grapevine canopy, consequences on the grape quality of cv. Gros Manseng in PDO Pacherenc-du-vic-Bilh

As elsewhere, southwestern France vineyards face more recurrent summer heat waves these last years. Among the possibilities of adaptation to this climate changing parameter, the use of net shading is a technique that allow for limiting canopy exposure to radiations. In this trial, we tested net shading installed on one face of the canopy, on a north-south row-oriented plot of cv. Gros Manseng trained on VSP system in the PDO Pacherenc-du-Vic-Bilh. The purpose was to characterize the effects on the ambient canopy temperatures and radiations during the season and to observe the consequences on the composition of grapes and wines. Two sorts of net were used with two levels of obstruction (50% and 75%) of the photosynthesis active radiation (PAR). They have been installed on the west side of the canopy and compared to a netless control. Temperature and PAR sensors registered hourly data during the season. On specific summer day (hot and sunny) manual measurements took also place on bunches (temperature) and in different spots of the canopy (PAR). The results showed that, on clear days, the radiation is lowered by the shade nets respecting the supplier criteria. The effects on the ambient canopy temperature were inconstant on this plot when we observed the data from the global period of shading between fruit set and harvest. However, during hot days (>30°C), the temperature in the canopy was reduced during afternoon and the temperature of the bunch surface was reduced as well comparing to the control. A decrease of the maturity parameters of the berries, sugar and acidity, was also observed. Concerning the wine aromatic potential, no differences clearly appeared.

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.