terclim by ICS banner
IVES 9 IVES Conference Series 9 Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Abstract

Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydosporaPhaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines. Here, we conducted metabolic profiling and untargeted/ targeted metabolomics to gather more insights into the molecular and biochemical mechanisms responsible for the onset of symptoms. Ultra-High Performance Liquid Chromatography (UHPLC-qTOF-MS/MS), Gas Chromatograph-Quadrupole Time of Flight Mass Spectrometry (GC-qTOF-MS/MS), and Liquid Cromatography (LC-MS/MS) enabled the identification of putative markers of symptomatology regarding hormonal regulation, primary and secondary metabolisms. Abscisic acid, jasmonates, and specific amino acids and sugars decrease in harvest-stage fruits from symptomatic grapevines, in contrast with the accumulation of a wide variety of phenylpropanoids (e.g., procyanidin B1, caftaric acid, resveratrol) among others. Secondary metabolism was more strongly remodelled indicating a partitioning of carbon allocated to defence-related metabolism. RNA extraction and sequencing are being conducted to integrate these metabolic results with molecular data. This study may contribute to developing a model regarding the development of Esca symptoms in an attempt to mitigate the worldwide impact of this complex disease.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Rute Amaro1*, Rita Pacheco2,3, Carla António4, Cecília Rego5, Lisete Sousa6, Paula Lopes1,7, Axel Mithöfer8, Ana Margarida Fortes1

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
2 Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
3 Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4 Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
5 LEAF – Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
6 Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
7 DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Vila Real, Portugal
8 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

Contact the author*

Keywords

Esca disease, Hormonal profiling, Primary metabolism, Phenylpropanoid pathways, RNA sequencing

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Viticulture between adaptation and resilience: the role of the Italian long-term observatories for vineyard energy, water and carbon budgets

Viticulture is exposed to a range of new stressors, that are challenging its sustainability and disrupting famous and well-established production regions. Steady increase of average temperature, recurring heat waves, altered rainfall seasonal distribution, drought spells, increased pathogens pressure, they all mix up with increased frequency, making every growing season a special challenge and calling for new approaches to cope with worrying scenarios.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.