IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Abstract

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS. Other elements such as Cu, zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb), are of concern due to their toxicological or physiological properties. The ageing of WS is traditionally performed in wooden barrels. In spite of the high quality achieved by the WS, this is a time-consuming and costly ageing technology, among other drawbacks. For these reasons, in recent years, special attention has been devoted to alternative ageing technologies, namely the application of wood fragments to WS kept in stainless steel, often combined with micro-oxygenation (MOX). Having in mind that wood ash main inorganic components are potassium (K), Ca and magnesium (Mg), but also sodium (Na) and Fe, the potential transference of these and other metals to the WS during ageing is expected. However, in spite of substantial understanding of the organic extractable compounds, little has been published on mineral elements extraction from wood to WS and even to wine, 2,3 and with the exception of a recent study of the authors focused on Fe and Cu, no data is available for chestnut wood.4 This study, developed within the Project Oxyrebrand (https://projects.iniav.pt/oxyrebrand/index.php/pt/), aimed to examine the effect of WS’s ageing with chestnut wood (Castanea sativa Mill.), considering traditional and alternative technologies, on the beverage mineral composition. A wine distillate was aged in 250 L chestnut barrels (traditional ageing) and in 50 L glass demijohns with chestnut wood staves combined with three levels of MOX and nitrogen application (alternative ageing technology), with two replicates. Sampling was carried out after 3 weeks, 2, 6, 9 and 12 months of ageing, and the WS was assessed in terms of mineral elements composition by adapting an Q-ICP-MS semi-quantitative method previously developed and validated. 5 A full mass spectrum (m/z = 6–240, omitting the mass ranges 16–18; 40, 41, 211–229) was obtained by full mass range scanning. ANOVA was performed to examine the influence of the ageing modality and ageing time on the mineral composition. At the end of the ageing essay, and for most part of the elements, no significant differences between WS from different ageing modalities were found. Ageing time had significant effect on most of the elements, with different trends and distinct magnitude of changes being observed, depending on the element. In general, the concentrations of the mineral elements found in the WS were quite low, which is positive from the WS quality point of view.

References

1 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa R., 2008. Contaminant elements in wines: A review. Ciência Téc. Vitiv., 23, 3-19.
2 Pilet A., Bruno de Sousa R., Ricardo-da-Silva J.M., Catarino S., 2019. Barrel-to-barrel variation of phenolic and mineral composition of red wine. Bio Web Conf., 12,  02011.
3 Kaya A., Bruno de Sousa R., Curvelo-Garcia A.S., Ricardo-da-Silva J.R., Catarino S., 2017. Effect of wood aging on mineral composition and wine 87Sr/86Sr isotopic ratio. J. Agric. Food Chem., 65, 4766-4776.
4 Canas S., Danalache F., Anjos O., Fernandes T.A., Caldeira I., Santos N., Fargeton N., Boissier B., Catarino S., 2020. Behaviour of Low Molecular Weight Compounds, Iron and Copper of Wine Spirit Aged with Chestnut Staves under Different Levels of Micro-Oxygenation. Molecules, 25, 5266.
5 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa, R., 2006. Measurements of contaminant elements of wines by inductively coupled plasma mass spectrometry: a comparison of two calibration approaches. Talanta, 70, 1073–1080.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Catarino Sofia1,2, Vasiliki Thanasi1, Ofélia Anjos3,4,5, Tiago A. Fernandes6,7, Ilda Caldeira8,9, Laurent Fargeton10, Benjamin Boissier10 and Sara Canas8,9

1LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa

2CEFEMA – Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa
3Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules
4CEF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda
5Centro de Biotecnologia de Plantas da Beira Interior
6CQE, Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Universidade de Lisboa
7DCeT – Departamento de Ciências e Tecnologia, Universidade Aberta
8Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoínha
9MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de formação avançada, Universidade de Évora
10Vivelys, Domaine du Chapître

Contact the author

Keywords

wine spirit ageing, mineral composition, chestnut wood, barrel, micro-oxygenation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of dehydration and maceration conditions on VOCs composition and olfactory profile of Moscato Bianco passito sweet wine

Among the Vitis vinifera L. cv. Moscato, Moscato Bianco is the oldest and most cultivated one in Europe (1). According to the OIV Focus 2015, Italy is the country with the largest cultivated area of Moscato Bianco with about 12500 hectares (2), that is used to produce well-known wines (i.e., Moscato Passito in Piedmont, Moscato di Trani in Puglia, and Moscatello di Montalcino in Tuscany), mainly obtained from partially dehydrated grapes (1). Different dehydration techniques can strongly modify the chemical compounds of oenological interest, among which Volatile Organic Compounds (VOCs) (1) that are the main responsible for the varietal sensory character of the final wine.

The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

Hydrogen sulfide and methanethiol are recognised as two of the most significant contributors to reductive off-flavours in wine.

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle.

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process.