IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Abstract

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS. Other elements such as Cu, zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb), are of concern due to their toxicological or physiological properties. The ageing of WS is traditionally performed in wooden barrels. In spite of the high quality achieved by the WS, this is a time-consuming and costly ageing technology, among other drawbacks. For these reasons, in recent years, special attention has been devoted to alternative ageing technologies, namely the application of wood fragments to WS kept in stainless steel, often combined with micro-oxygenation (MOX). Having in mind that wood ash main inorganic components are potassium (K), Ca and magnesium (Mg), but also sodium (Na) and Fe, the potential transference of these and other metals to the WS during ageing is expected. However, in spite of substantial understanding of the organic extractable compounds, little has been published on mineral elements extraction from wood to WS and even to wine, 2,3 and with the exception of a recent study of the authors focused on Fe and Cu, no data is available for chestnut wood.4 This study, developed within the Project Oxyrebrand (https://projects.iniav.pt/oxyrebrand/index.php/pt/), aimed to examine the effect of WS’s ageing with chestnut wood (Castanea sativa Mill.), considering traditional and alternative technologies, on the beverage mineral composition. A wine distillate was aged in 250 L chestnut barrels (traditional ageing) and in 50 L glass demijohns with chestnut wood staves combined with three levels of MOX and nitrogen application (alternative ageing technology), with two replicates. Sampling was carried out after 3 weeks, 2, 6, 9 and 12 months of ageing, and the WS was assessed in terms of mineral elements composition by adapting an Q-ICP-MS semi-quantitative method previously developed and validated. 5 A full mass spectrum (m/z = 6–240, omitting the mass ranges 16–18; 40, 41, 211–229) was obtained by full mass range scanning. ANOVA was performed to examine the influence of the ageing modality and ageing time on the mineral composition. At the end of the ageing essay, and for most part of the elements, no significant differences between WS from different ageing modalities were found. Ageing time had significant effect on most of the elements, with different trends and distinct magnitude of changes being observed, depending on the element. In general, the concentrations of the mineral elements found in the WS were quite low, which is positive from the WS quality point of view.

References

1 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa R., 2008. Contaminant elements in wines: A review. Ciência Téc. Vitiv., 23, 3-19.
2 Pilet A., Bruno de Sousa R., Ricardo-da-Silva J.M., Catarino S., 2019. Barrel-to-barrel variation of phenolic and mineral composition of red wine. Bio Web Conf., 12,  02011.
3 Kaya A., Bruno de Sousa R., Curvelo-Garcia A.S., Ricardo-da-Silva J.R., Catarino S., 2017. Effect of wood aging on mineral composition and wine 87Sr/86Sr isotopic ratio. J. Agric. Food Chem., 65, 4766-4776.
4 Canas S., Danalache F., Anjos O., Fernandes T.A., Caldeira I., Santos N., Fargeton N., Boissier B., Catarino S., 2020. Behaviour of Low Molecular Weight Compounds, Iron and Copper of Wine Spirit Aged with Chestnut Staves under Different Levels of Micro-Oxygenation. Molecules, 25, 5266.
5 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa, R., 2006. Measurements of contaminant elements of wines by inductively coupled plasma mass spectrometry: a comparison of two calibration approaches. Talanta, 70, 1073–1080.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Catarino Sofia1,2, Vasiliki Thanasi1, Ofélia Anjos3,4,5, Tiago A. Fernandes6,7, Ilda Caldeira8,9, Laurent Fargeton10, Benjamin Boissier10 and Sara Canas8,9

1LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa

2CEFEMA – Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa
3Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules
4CEF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda
5Centro de Biotecnologia de Plantas da Beira Interior
6CQE, Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Universidade de Lisboa
7DCeT – Departamento de Ciências e Tecnologia, Universidade Aberta
8Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoínha
9MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de formação avançada, Universidade de Évora
10Vivelys, Domaine du Chapître

Contact the author

Keywords

wine spirit ageing, mineral composition, chestnut wood, barrel, micro-oxygenation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).