terclim by ICS banner
IVES 9 IVES Conference Series 9 Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease

Hormonal and associated metabolic changes in susceptible harvest-ripe grapes under asymptomatic and symptomatic Esca disease


Esca complex is a disease affecting grapevine trunks, characterized by the colonization of the wood by xylem-residing fungi (Phaeomoniella chlamydosporaPhaeoacremonium minimum and Fomitiporia mediterranea), and posing significant risks to vineyard longevity since no efficient treatment is available. Despite its prevalence, the mechanisms beyond symptomatic manifestations like interveinal chlorosis and leaf necrosis remain unclear. Preliminary findings indicated a more pronounced metabolic reprogramming in fruits compared to vegetative organs and a putative impact on wine quality by using fruits from symptomatic grapevines. Here, we conducted metabolic profiling and untargeted/ targeted metabolomics to gather more insights into the molecular and biochemical mechanisms responsible for the onset of symptoms. Ultra-High Performance Liquid Chromatography (UHPLC-qTOF-MS/MS), Gas Chromatograph-Quadrupole Time of Flight Mass Spectrometry (GC-qTOF-MS/MS), and Liquid Cromatography (LC-MS/MS) enabled the identification of putative markers of symptomatology regarding hormonal regulation, primary and secondary metabolisms. Abscisic acid, jasmonates, and specific amino acids and sugars decrease in harvest-stage fruits from symptomatic grapevines, in contrast with the accumulation of a wide variety of phenylpropanoids (e.g., procyanidin B1, caftaric acid, resveratrol) among others. Secondary metabolism was more strongly remodelled indicating a partitioning of carbon allocated to defence-related metabolism. RNA extraction and sequencing are being conducted to integrate these metabolic results with molecular data. This study may contribute to developing a model regarding the development of Esca symptoms in an attempt to mitigate the worldwide impact of this complex disease.


Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article


Rute Amaro1*, Rita Pacheco2,3, Carla António4, Cecília Rego5, Lisete Sousa6, Paula Lopes1,7, Axel Mithöfer8, Ana Margarida Fortes1

1 BioISI – Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
2 Department of Chemical Engineering, ISEL—Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
3 Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4 Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
5 LEAF – Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
6 Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
7 DNA & RNA Sensing Lab, University of Trás-os-Montes e Alto Douro, Department of Genetics and Biotechnology, School of Life Science and Environment, Vila Real, Portugal
8 Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany

Contact the author*


Esca disease, Hormonal profiling, Primary metabolism, Phenylpropanoid pathways, RNA sequencing


IVES Conference Series | Open GPB | Open GPB 2024


Related articles…

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area.

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.

Agronomic and oenological characterization of the intraspecific cross ‘Passau’ in the aim of its commercial use

The study of new wine grape cultivars can be interesting to diversify the local wine productions without using international varieties. With this aim some Vitis vinifera intraspecific crosses obtained by Prof. Dalmasso in the 1930s and registered in the Italian National Catalogue in 1977, have been studied in the last years.

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.