terclim by ICS banner
IVES 9 IVES Conference Series 9 Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil. Our work was carried out in the GreffAdapt plot, a unique experimental vineyard, including 55 rootstocks grafted with five different scions. Roots and rhizospheres from ten scion × rootstock combinations were collected in May 2021. Rhizosphere bacteria and fungi were quantified using cultivable approaches and qPCR. The communities of bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere and the roots were analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. Our results highlight that both rootstock and scion genotypes influence the community structure in the rhizosphere and root compartments. The metabarcoding approach shows dissimilarities among bacterial and fungal communities depending on the rootstock or the scion genotype, suggesting that the two partners influence the microbial composition of the rhizosphere and the roots, as well as the putative functions of the microbiome (inferred using Picrust2 and FUNGuild). Finally, the roles of the microbiome in plant development and adaptation will be discussed by correlating its composition with plant phenotypic traits, as well as nutrient content of petioles and roots.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Vincent Lailheugue, Romain Darriaut, Anne Janoueix, Marine Morel, Joseph Tran, Elisa Marguerit, Virginie Lauvergeat*

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, root system, metabarcoding, PICRUSt2, FUNGuild

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.