terclim by ICS banner
IVES 9 IVES Conference Series 9 Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil. Our work was carried out in the GreffAdapt plot, a unique experimental vineyard, including 55 rootstocks grafted with five different scions. Roots and rhizospheres from ten scion × rootstock combinations were collected in May 2021. Rhizosphere bacteria and fungi were quantified using cultivable approaches and qPCR. The communities of bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere and the roots were analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. Our results highlight that both rootstock and scion genotypes influence the community structure in the rhizosphere and root compartments. The metabarcoding approach shows dissimilarities among bacterial and fungal communities depending on the rootstock or the scion genotype, suggesting that the two partners influence the microbial composition of the rhizosphere and the roots, as well as the putative functions of the microbiome (inferred using Picrust2 and FUNGuild). Finally, the roles of the microbiome in plant development and adaptation will be discussed by correlating its composition with plant phenotypic traits, as well as nutrient content of petioles and roots.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Vincent Lailheugue, Romain Darriaut, Anne Janoueix, Marine Morel, Joseph Tran, Elisa Marguerit, Virginie Lauvergeat*

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, root system, metabarcoding, PICRUSt2, FUNGuild

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

Evaluation of intrinsic grape berry and cluster traits for postharvest withering kinetics prediction

To make some particular wine styles (e.g., Amarone), grapes are harvested and stored in dehydrating rooms before vinification, in a process called withering

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.