terclim by ICS banner
IVES 9 IVES Conference Series 9 Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil. Our work was carried out in the GreffAdapt plot, a unique experimental vineyard, including 55 rootstocks grafted with five different scions. Roots and rhizospheres from ten scion × rootstock combinations were collected in May 2021. Rhizosphere bacteria and fungi were quantified using cultivable approaches and qPCR. The communities of bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere and the roots were analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. Our results highlight that both rootstock and scion genotypes influence the community structure in the rhizosphere and root compartments. The metabarcoding approach shows dissimilarities among bacterial and fungal communities depending on the rootstock or the scion genotype, suggesting that the two partners influence the microbial composition of the rhizosphere and the roots, as well as the putative functions of the microbiome (inferred using Picrust2 and FUNGuild). Finally, the roles of the microbiome in plant development and adaptation will be discussed by correlating its composition with plant phenotypic traits, as well as nutrient content of petioles and roots.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Vincent Lailheugue, Romain Darriaut, Anne Janoueix, Marine Morel, Joseph Tran, Elisa Marguerit, Virginie Lauvergeat*

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, root system, metabarcoding, PICRUSt2, FUNGuild

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.)

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.