terclim by ICS banner
IVES 9 IVES Conference Series 9 Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil. Our work was carried out in the GreffAdapt plot, a unique experimental vineyard, including 55 rootstocks grafted with five different scions. Roots and rhizospheres from ten scion × rootstock combinations were collected in May 2021. Rhizosphere bacteria and fungi were quantified using cultivable approaches and qPCR. The communities of bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere and the roots were analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. Our results highlight that both rootstock and scion genotypes influence the community structure in the rhizosphere and root compartments. The metabarcoding approach shows dissimilarities among bacterial and fungal communities depending on the rootstock or the scion genotype, suggesting that the two partners influence the microbial composition of the rhizosphere and the roots, as well as the putative functions of the microbiome (inferred using Picrust2 and FUNGuild). Finally, the roles of the microbiome in plant development and adaptation will be discussed by correlating its composition with plant phenotypic traits, as well as nutrient content of petioles and roots.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Vincent Lailheugue, Romain Darriaut, Anne Janoueix, Marine Morel, Joseph Tran, Elisa Marguerit, Virginie Lauvergeat*

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, root system, metabarcoding, PICRUSt2, FUNGuild

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Les sols du cru de Bonnezeaux, Thouarcé, Anjou, France

Le cru de Bonnezeaux est une des appellations prestigieuses des vins liquoreux et moelleux des Coteaux du Layon et sa réputation est ancienne. L’INAO a effectué sa délimitation en 1953. Le vignoble est situé au nord de la ville de Thouarcé et au sud du village de Bonnezeaux, le long du versant rive droite du Layon, exposé au sud-ouest. La superficie du vignoble est de 156 ha.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.