terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Abstract

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms. To this aim, a Synthetic Community (SynCom) has been formulated, using grapevine endophytes and arbuscular mycorrhizal fungi, and  applied to potted cuttings of diverse rootstock genotypes. Plant development and physiological parameters were carefully monitored throughout an entire growing season. Root samples were collected for: i) DNA extraction and metabarcoding analysis to identify the root-associated microbiota and ii) RNA extraction for transcriptomic analysis. Concurrently, leaf and root samples were collected for targeted metabolomics, focusing on compounds involved in microbial recruitment, including, among others, coumarins, strigolactones, salicylic acid, and jasmonic acid.

Employing an innovative multi-omics approach, phenotypic, physiological, biochemical, and molecular data will be integrated to improve our understanding of the complex interaction within grapevine and its associated microbiota.This could result in new breeding programs which will also consider these traits as selection criteria, thereby preserving the ability of grapevine to recruit beneficial microorganisms. Furthermore, these results will provide useful information for the development of a more effective SynCom to augment holobiont resilience and thus to promote more sustainable agricultural practices.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Spada1,2*, Giuseppe Paradiso1, Marco Sandrini1, Chiara Biselli3, Teodora Basile1, Raffaella Balestrini4, Claudio Bonghi2, Luca Nerva1,4, Walter Chitarra1,4

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Via dell’Università 16, 35020 Legnaro (PD), Italy
3 Research Centre for Forestry and Wood, Council for Agricultural Research and Economics (CREA-FL), Viale Santa Margherita 80, 52100, Arezzo, Italy
4 National Research Council of Italy – Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy

Contact the author*

Keywords

Rootstock, Domestication syndrome, Endophytes, Microbial recruiting, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Organic volatile compounds as suitable markers of grapevine response to defense elicitors in the vineyard

In greenhouse, emission of volatile organic compounds (VOC) by grapevine leaves has already been reported in response to the defence elicitor sulfated laminarin (PS3) [1]. In order to check that this response was not specific to PS3, experiments were conducted on Vitis cv Marselan plantlets with several other elicitors of different chemical structures: i.e. Bastid® (COS-OGA),

La valorisation des Terroirs Viticoles par les Indications géographiques et les appellations d’origine

Le sujet proposé dans le thème “l’environnement juridique” est plus économique que juridique, et constitue une sorte de complément au sujet qui l’a précédé : analyse des marchés, stratégies commerciales et terroirs”.

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

High throughput winter pruning weight estimation based on wood volume evaluation 

There is currently a real need to improve and speed-up phenotyping in experimental set-ups to increase the number of modalities studied. Accurate information acquisition on plant status with high-throughput capacity is the main appeal of on-board systems.
A proximal sensing camera for a proxy of winter pruning weight was tested. We estimated the shoot volume of the vine by image analysis using algorithms that integrate the local shoot section area estimate along the shoot skeleton obtained by a morphological distance transform.
The study was carried out on the GreffAdapt experimental vineyard in Guyot simple training and a canopy management using vertical trellising. The planting density is 6250 vines/ha with a row spacing of 1.6×1m. Five scions grafted onto 55 rootstocks are present and the combination rootstock×scion is different every five plants.