terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Abstract

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms. To this aim, a Synthetic Community (SynCom) has been formulated, using grapevine endophytes and arbuscular mycorrhizal fungi, and  applied to potted cuttings of diverse rootstock genotypes. Plant development and physiological parameters were carefully monitored throughout an entire growing season. Root samples were collected for: i) DNA extraction and metabarcoding analysis to identify the root-associated microbiota and ii) RNA extraction for transcriptomic analysis. Concurrently, leaf and root samples were collected for targeted metabolomics, focusing on compounds involved in microbial recruitment, including, among others, coumarins, strigolactones, salicylic acid, and jasmonic acid.

Employing an innovative multi-omics approach, phenotypic, physiological, biochemical, and molecular data will be integrated to improve our understanding of the complex interaction within grapevine and its associated microbiota.This could result in new breeding programs which will also consider these traits as selection criteria, thereby preserving the ability of grapevine to recruit beneficial microorganisms. Furthermore, these results will provide useful information for the development of a more effective SynCom to augment holobiont resilience and thus to promote more sustainable agricultural practices.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Spada1,2*, Giuseppe Paradiso1, Marco Sandrini1, Chiara Biselli3, Teodora Basile1, Raffaella Balestrini4, Claudio Bonghi2, Luca Nerva1,4, Walter Chitarra1,4

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Via dell’Università 16, 35020 Legnaro (PD), Italy
3 Research Centre for Forestry and Wood, Council for Agricultural Research and Economics (CREA-FL), Viale Santa Margherita 80, 52100, Arezzo, Italy
4 National Research Council of Italy – Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy

Contact the author*

Keywords

Rootstock, Domestication syndrome, Endophytes, Microbial recruiting, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Grape berry size is a key factor in determining New Zealand Pinot noir wine composition

Making high quality but affordable Pinot noir (PN) wine is challenging in most terroirs and New Zealand’s (NZ) situation is no exception. To increase the probability of making highly typical PN wines producers choose to grow grapes in cool climates on lower fertility soils while adopting labour intensive practices. Stringent yield targets and higher input costs necessarily mean that PN wine cost is high, and profitability lower, in line-priced varietal wine ranges. To understand the reasons why higher yielding vines are perceived to produce wines of lower quality we have undertaken an extensive study of PN in NZ. Since 2018, we established a network of twelve trial sites in three NZ regions to find individual vines that produced acceptable commercial yields (above 2.5kg per vine) and wines of composition comparable to “Icon” labels. Approximately 20% of 660 grape lots (N = 135) were selected from within a narrow juice Total Soluble Solids (TSS) range and made into single vine wines under controlled conditions. Principal Component Analysis of the vine, berry, juice and wine parameters from three vintages found grape berry mass to be most effective clustering variable. As berry mass category decreased there was a systematic increase in the probability of higher berry red colour and total phenolics with a parallel increase in wine phenolics, changed aroma fraction and decreased juice amino acids. The influence of berry size on wine composition would appear stronger than the individual effects of vintage, region, vineyard or vine yield. Our observations support the hypothesis that it is possible to produce PN wines that fall within an “Icon” benchmark composition range at yields above 2.5kg per vine provided that the Leaf Area:Fruit Weight ratio is above 12cm2 per g, mean berry mass is below 1.2g and juice TSS is above 22°Brix.