terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Abstract

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms. To this aim, a Synthetic Community (SynCom) has been formulated, using grapevine endophytes and arbuscular mycorrhizal fungi, and  applied to potted cuttings of diverse rootstock genotypes. Plant development and physiological parameters were carefully monitored throughout an entire growing season. Root samples were collected for: i) DNA extraction and metabarcoding analysis to identify the root-associated microbiota and ii) RNA extraction for transcriptomic analysis. Concurrently, leaf and root samples were collected for targeted metabolomics, focusing on compounds involved in microbial recruitment, including, among others, coumarins, strigolactones, salicylic acid, and jasmonic acid.

Employing an innovative multi-omics approach, phenotypic, physiological, biochemical, and molecular data will be integrated to improve our understanding of the complex interaction within grapevine and its associated microbiota.This could result in new breeding programs which will also consider these traits as selection criteria, thereby preserving the ability of grapevine to recruit beneficial microorganisms. Furthermore, these results will provide useful information for the development of a more effective SynCom to augment holobiont resilience and thus to promote more sustainable agricultural practices.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Spada1,2*, Giuseppe Paradiso1, Marco Sandrini1, Chiara Biselli3, Teodora Basile1, Raffaella Balestrini4, Claudio Bonghi2, Luca Nerva1,4, Walter Chitarra1,4

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Via dell’Università 16, 35020 Legnaro (PD), Italy
3 Research Centre for Forestry and Wood, Council for Agricultural Research and Economics (CREA-FL), Viale Santa Margherita 80, 52100, Arezzo, Italy
4 National Research Council of Italy – Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy

Contact the author*

Keywords

Rootstock, Domestication syndrome, Endophytes, Microbial recruiting, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

The vascular connections in grafted plants under examination

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in