terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Abstract

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms. To this aim, a Synthetic Community (SynCom) has been formulated, using grapevine endophytes and arbuscular mycorrhizal fungi, and  applied to potted cuttings of diverse rootstock genotypes. Plant development and physiological parameters were carefully monitored throughout an entire growing season. Root samples were collected for: i) DNA extraction and metabarcoding analysis to identify the root-associated microbiota and ii) RNA extraction for transcriptomic analysis. Concurrently, leaf and root samples were collected for targeted metabolomics, focusing on compounds involved in microbial recruitment, including, among others, coumarins, strigolactones, salicylic acid, and jasmonic acid.

Employing an innovative multi-omics approach, phenotypic, physiological, biochemical, and molecular data will be integrated to improve our understanding of the complex interaction within grapevine and its associated microbiota.This could result in new breeding programs which will also consider these traits as selection criteria, thereby preserving the ability of grapevine to recruit beneficial microorganisms. Furthermore, these results will provide useful information for the development of a more effective SynCom to augment holobiont resilience and thus to promote more sustainable agricultural practices.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alberto Spada1,2*, Giuseppe Paradiso1, Marco Sandrini1, Chiara Biselli3, Teodora Basile1, Raffaella Balestrini4, Claudio Bonghi2, Luca Nerva1,4, Walter Chitarra1,4

1 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
2 University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, Via dell’Università 16, 35020 Legnaro (PD), Italy
3 Research Centre for Forestry and Wood, Council for Agricultural Research and Economics (CREA-FL), Viale Santa Margherita 80, 52100, Arezzo, Italy
4 National Research Council of Italy – Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce 73, 10135 Torino (TO), Italy

Contact the author*

Keywords

Rootstock, Domestication syndrome, Endophytes, Microbial recruiting, Multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.