terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating the role of endophytes in enhancing grapevine resilience to drought

Investigating the role of endophytes in enhancing grapevine resilience to drought

Abstract

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions. Cultivable bacterial communities of field grapevine plants growing in the arid regions of Italy and Algeria have been isolated from leaf tissues. Endophytes were characterised and screened for their plant growth-promoting traits and used to generate endophyte consortia to inoculate endophyte-free grapevine plants. In a parallel approach we tested the possibility of using the grafting procedure to transfer endophytes between plants. Preliminary data are presented showing the efficiency of this procedure and the dynamics of the endophyte community in the destination plant.

Funding

This work is funded by PRIMA foundation. Project nr.1565 – PROSIT: Plant microbiomes in sustainable viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Irene Doro1*, Yuri Luca Negroni1, Elisabetta Barizza1, Alberto Tamborrino1, Alessandra Tondello2, Stefania Marcato1, Angela Carra3, Dalila Crucitti3, Roberto de Michele3, Rosalba Cipriani1, Sebastiano Nigris1, Barbara Baldan1, Arezki Lehad4, Andrea Squartini2, Francesco Carimi3, Davide Pacifico3, Michela Zottini1

1Department of Biology, University of Padova, Padova, Italy
2Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Padova, Italy
3Department of Agri-Food Sciences, Institute of Biosciences and BioResources (IBBR), C.N.R., Palermo, Italy
4Département De Botanique, Ecole Nationale Supérieure, El harrach, Algérie

Contact the author*

Keywords

grapevine, endophyte, climate change, drought, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Enhancing sustainability in winemaking: the role of PIWI in South Tyrol

The adoption of PIWI (Pilzwiderstandsfähige) grape cultivars, bred for resistance to fungal diseases, is a transformative step towards sustainable winemaking.

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).

Vineyards and grape varieties: what is going on in wine professional and consumer minds?

Vineyard and grape variety are two popular ways of classifying wines. Vineyard designation is a traditional practice for European wine labels but is being increasingly replaced by grape variety designation, mainly used for New World and Swiss wine labels.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.