terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating the role of endophytes in enhancing grapevine resilience to drought

Investigating the role of endophytes in enhancing grapevine resilience to drought

Abstract

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions. Cultivable bacterial communities of field grapevine plants growing in the arid regions of Italy and Algeria have been isolated from leaf tissues. Endophytes were characterised and screened for their plant growth-promoting traits and used to generate endophyte consortia to inoculate endophyte-free grapevine plants. In a parallel approach we tested the possibility of using the grafting procedure to transfer endophytes between plants. Preliminary data are presented showing the efficiency of this procedure and the dynamics of the endophyte community in the destination plant.

Funding

This work is funded by PRIMA foundation. Project nr.1565 – PROSIT: Plant microbiomes in sustainable viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Irene Doro1*, Yuri Luca Negroni1, Elisabetta Barizza1, Alberto Tamborrino1, Alessandra Tondello2, Stefania Marcato1, Angela Carra3, Dalila Crucitti3, Roberto de Michele3, Rosalba Cipriani1, Sebastiano Nigris1, Barbara Baldan1, Arezki Lehad4, Andrea Squartini2, Francesco Carimi3, Davide Pacifico3, Michela Zottini1

1Department of Biology, University of Padova, Padova, Italy
2Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Padova, Italy
3Department of Agri-Food Sciences, Institute of Biosciences and BioResources (IBBR), C.N.R., Palermo, Italy
4Département De Botanique, Ecole Nationale Supérieure, El harrach, Algérie

Contact the author*

Keywords

grapevine, endophyte, climate change, drought, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively.

First step in the preparation of a soil map of the Protected Designation of Origin Valdepeñas (Central, Spain)

This work is a first step to make a map of vineyard soils. The characterization of the soils of the Protected Designation of Origin (D.P.O.) Valdepeñas will allow to group the studied profiles according to their physico-chemical characteristics and the concentrations of most relevant chemical elements. 90 soil profiles were analysed throughout the territory and the soils were sampled and described according to FAO (2006) and classified according to and Soil Taxonomy (2014). All samples were air dried, sieved and some physico-chemical parameters were determined following standard protocols. Also, major and trace elements were analysed by X-ray fluorescence. The statistically study was made using the SPSS program. Trend maps were made using the ArcGIS program. The studied soils have the following average properties: pH, 8.3; electrical conductivity, 0,20 dS/m (low); clay, 18.8% (medium) and CaCO3, 17.1% (high). In the study for the major elements. The major elements of these soils are Si, followed by Ca and Al, with an average content of 203.7 g/kg, 105.5 g/kg and 74.0 g/kg respectively. On the other hand, 27 trace elements have been studied. Of all of them, it can be highlighted the average values of Ba (361.8 mg/kg), Sr (129.3 mg/kg), Rb (83.4 mg/kg), V (74.2 mg/kg) and Ce (70.6 mg/kg). Ba, V and Ce values are higher and the values of Sr and Rb are lower to those found in the literature. The discriminant analysis shows a percentage of grouping of 91%. The content of chemical elements together with the physico-chemical characteristics allows grouping the soils in 4 group according to their order in the classification to Soil Taxonomy; due to the importance of the Calcisols in Castilla-La Mancha, it has been decided to establish them as their own group even if they do not appear in Soil Taxonomy classification.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.