terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating the role of endophytes in enhancing grapevine resilience to drought

Investigating the role of endophytes in enhancing grapevine resilience to drought

Abstract

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions. Cultivable bacterial communities of field grapevine plants growing in the arid regions of Italy and Algeria have been isolated from leaf tissues. Endophytes were characterised and screened for their plant growth-promoting traits and used to generate endophyte consortia to inoculate endophyte-free grapevine plants. In a parallel approach we tested the possibility of using the grafting procedure to transfer endophytes between plants. Preliminary data are presented showing the efficiency of this procedure and the dynamics of the endophyte community in the destination plant.

Funding

This work is funded by PRIMA foundation. Project nr.1565 – PROSIT: Plant microbiomes in sustainable viticulture.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Irene Doro1*, Yuri Luca Negroni1, Elisabetta Barizza1, Alberto Tamborrino1, Alessandra Tondello2, Stefania Marcato1, Angela Carra3, Dalila Crucitti3, Roberto de Michele3, Rosalba Cipriani1, Sebastiano Nigris1, Barbara Baldan1, Arezki Lehad4, Andrea Squartini2, Francesco Carimi3, Davide Pacifico3, Michela Zottini1

1Department of Biology, University of Padova, Padova, Italy
2Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Padova, Italy
3Department of Agri-Food Sciences, Institute of Biosciences and BioResources (IBBR), C.N.R., Palermo, Italy
4Département De Botanique, Ecole Nationale Supérieure, El harrach, Algérie

Contact the author*

Keywords

grapevine, endophyte, climate change, drought, sustainability

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Geological characterization of plot belonging to the left bank terraces terroir of the Gaillac vineyard (Tarn, Midi-Pyrénées). Consequences on determination of choice of vegetative material

Detailed geological analyses of a plot belonging to the « AOC Gaillac » area have been carried out. This plot belongs to the left bank terraces of the Tarn River which coinciding with one of the three main terroirs of the AOC area. It is localised on the rissian-aged (≈ 200 000 yrs B.P.)

Le réseau français des partenaires de la sélection vigne : un dispositif unique au monde au service de la sauvegarde du patrimoine variétal

The French vine selection partners network is currently made up of 40 regional partners, grouped around IFV (French Institute for Vine and Wine) and INRAE (national research institute for agriculture and environment), whose missions are preservation, selection, and innovation of our varietal diversity. The originality of this device is based on a 3-level organisation: – varietal diversity preservation, with the world reference: the INRAE’s vine genetics resources centre of Vassal-Montpellier (Marseillan, France), the world’s largest ampelographic collection, which includes nearly 6 000 accessions of cultivated Vitis vinifera from 54 countries, as well as rootstocks, interspecific hybrids, wild vines (lambrusques) and wild American and Asian species.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

Metabolomics comparison of non-Saccharomyces yeasts in Sauvignon blanc and Shiraz

Saccharomyces cerevisiae (SC) is the main driver of alcoholic fermentation however, in wine, non-Saccharomyces species can have a powerful effect on aroma and flavor formation. This study aimed to compare untargeted volatile compound profiles from SPME-GC×GC-TOF-MS of Sauvignon blanc and Shiraz wine inoculated with six different non-Saccharomyces yeasts followed by SC. Torulaspora delbrueckii (TD), Lachancea thermotolerans (LT), Pichia kluyveri (PK) and Metschnikowia pulcherrima (MP) were commercial starter strains, while Candida zemplinina (CZ) and Kazachstania aerobia (KA), were isolated from wine grape environments. Each fermentation produced a distinct chemical profile that was unique for both grape musts. The SC-monoculture and CZ-SC sequential fermentations were the most distinctly different in the Sauvignon blanc while the LT-SC sequential fermentations were the most different from the control in the Shiraz fermentations.