Terroir 2020 banner
IVES 9 IVES Conference Series 9 The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth

The influence of site aspect and pruning types on Pinot Noir phenology and shoot growth


Aim: Managing the influence that terroir in vineyards has on vine development depends on improving our understanding the effect of the interaction of within-site variability, within-vine variability, and management practices (such as pruning types) on phenology and vine development. This study evaluates the consequence of site aspect and pruning management on budburst, leaf appearance rate, and shoot growth in Pinot noir vines.

Methods and Results: Two rows of 19-year-old Pinot noir vines were selected within a commercial vineyard with south, hilltop, and north-facing aspects (note: the north-facing slope is sun-facing in the Southern Hemisphere). Vines were either cane- or spur-pruned, retaining 20 nodes per vine. Budburst, shoot development, and leaf appearance were assessed, and vine trunk circumference was measured to quantify the accumulated differences in vine vigour.

Hilltop plots had smaller trunk circumferences when compared to the south- and north-facing plots. Irrespective of topographical positions, budburst was earlier in cane-pruned vines compared to spur-pruned vines, but no differences were observed by the time of 12-leaf stage. The rate of shoot growth reflected the variations in topographical positions and trunk circumference. Cane-pruning exhibited more significant within-vine variation in budburst, budburst duration, and shoot growth when compared with spur-pruning. Shoots from hilltop vines were shorter relative to the vines at other plots for both pruning systems.


The rate of shoot growth and development was associated more with site and vine vigour as determined by trunk circumference than pruning type. Spur-pruned vines had a later but more uniform budburst when compared to cane-pruned vines.

Significance and Impact of the Study: Pruning type and within-site variability may lead to differences in canopy density and vine vigour, which can ultimately impact subsequent growth and development of the grapevine. Determining the influence of terroir within the vineyard on budburst, leaf appearance, and shoot growth variability will enable the development of improved phenology and growth models to describe within vineyard variability.


Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video


Chinna Ghouse Peera Shaikh Kulsum1*, Michael Trought1, Hervé Quénol3, Andrew Sturman2, Don Kulasiri1, Amber Parker1

1Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand
3 CNRS, UMR 6554 LETG, Université Rennes 2, Place du Recteur Henri Le Moal, 35043, Rennes, France

Contact the author


Terroir, pruning system, within-vine variability, vine vigour, shoot growth and development, Pinot noir


IVES Conference Series | Terroir 2020


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.