terclim by ICS banner
IVES 9 IVES Conference Series 9 Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Abstract

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays. Young leaves previously sterilized were inoculated with a vacuum tower. Fungal development was evaluated on a scale from 1 to 5, seven and 14 days after inoculation. At 7 days, mycelium growth, without development of conidiophores, was observed in all varieties, with Eidos having the highest incidence. At 14 days, none of the varieties reached a scale of 4, except Mazuelo (used as standard). The highest incidence was recorded in the Volos variety. Preliminary trials on downy mildew also showed differences in resistance to attack by P. viticola, with Kretos having the highest incidence of the disease, but further trials will be conducted to validate these data. These results reveal that these varieties may be an alternative in order to reduce the number of spray applications to control the fungus.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the staff at CIDA and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

M. Mar Hernández*, Sara I. Blanco–González, Cristina M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, resistant varieties

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation.

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Oenological tannins are products extracted from various botanical sources, such as mimosa,
acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as
“processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.