terclim by ICS banner
IVES 9 IVES Conference Series 9 Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Abstract

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays. Young leaves previously sterilized were inoculated with a vacuum tower. Fungal development was evaluated on a scale from 1 to 5, seven and 14 days after inoculation. At 7 days, mycelium growth, without development of conidiophores, was observed in all varieties, with Eidos having the highest incidence. At 14 days, none of the varieties reached a scale of 4, except Mazuelo (used as standard). The highest incidence was recorded in the Volos variety. Preliminary trials on downy mildew also showed differences in resistance to attack by P. viticola, with Kretos having the highest incidence of the disease, but further trials will be conducted to validate these data. These results reveal that these varieties may be an alternative in order to reduce the number of spray applications to control the fungus.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the staff at CIDA and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

M. Mar Hernández*, Sara I. Blanco–González, Cristina M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, resistant varieties

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of copper residues in grape must on alcoholic fermentation: effects on yeast performance, acetaldehyde and SO2 production

A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).