terclim by ICS banner
IVES 9 IVES Conference Series 9 Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Abstract

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays. Young leaves previously sterilized were inoculated with a vacuum tower. Fungal development was evaluated on a scale from 1 to 5, seven and 14 days after inoculation. At 7 days, mycelium growth, without development of conidiophores, was observed in all varieties, with Eidos having the highest incidence. At 14 days, none of the varieties reached a scale of 4, except Mazuelo (used as standard). The highest incidence was recorded in the Volos variety. Preliminary trials on downy mildew also showed differences in resistance to attack by P. viticola, with Kretos having the highest incidence of the disease, but further trials will be conducted to validate these data. These results reveal that these varieties may be an alternative in order to reduce the number of spray applications to control the fungus.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the staff at CIDA and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

M. Mar Hernández*, Sara I. Blanco–González, Cristina M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, resistant varieties

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.