terclim by ICS banner
IVES 9 IVES Conference Series 9 REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

Abstract

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state. REVINE intends to improve the biodiversity in the vineyards by using multiple approaches, including: i) screening of tolerant grapevine genotypes; ii) consociation of the grapevine with profitable cover crops; iii) the use of cultivation practices able to enhance soil biodiversity and the beneficial rhizosphere microorganisms.
REVINE, by means of Regenerative Agriculture, intends to rebuild soil organic matter and restore degraded soil biodiversity. In particular, biochar is a carbon-rich substrate that has multiple effects and can be used as soil amendment. It increases soil water-holding capacity and nutrient-availability for plants, thus positively affecting plant growth and preventing water stress. Moreover, by improving soil’s physical and chemical properties, biochar modifies microbial habitats and fosters the presence of plant beneficial microbes. Biofertilizers and amendments will be produced from crop residues.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Cachão1*, Ana Chambel1, Sérgio Pinto1, Goreti Trindade1

1AVIPE, R. D. João de Castro, 12 loja, 2950-206 Palmela, Portugal

Contact the author*

Keywords

Regenerative agriculture, vineyards, soil microbial biodiversity, biofertilizers

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.