terclim by ICS banner
IVES 9 IVES Conference Series 9 REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

Abstract

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state. REVINE intends to improve the biodiversity in the vineyards by using multiple approaches, including: i) screening of tolerant grapevine genotypes; ii) consociation of the grapevine with profitable cover crops; iii) the use of cultivation practices able to enhance soil biodiversity and the beneficial rhizosphere microorganisms.
REVINE, by means of Regenerative Agriculture, intends to rebuild soil organic matter and restore degraded soil biodiversity. In particular, biochar is a carbon-rich substrate that has multiple effects and can be used as soil amendment. It increases soil water-holding capacity and nutrient-availability for plants, thus positively affecting plant growth and preventing water stress. Moreover, by improving soil’s physical and chemical properties, biochar modifies microbial habitats and fosters the presence of plant beneficial microbes. Biofertilizers and amendments will be produced from crop residues.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Miguel Cachão1*, Ana Chambel1, Sérgio Pinto1, Goreti Trindade1

1AVIPE, R. D. João de Castro, 12 loja, 2950-206 Palmela, Portugal

Contact the author*

Keywords

Regenerative agriculture, vineyards, soil microbial biodiversity, biofertilizers

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vineyard altitude as a climate change adaptation strategy and its effect on Riesling during grapes and wine composition during ripening

Climate is one of the main drivers of spatial and temporal variability in grapevine physiology and therefore a key determinant of grape composition and final wine value. The world has warmed 1.1 °C since pre-industrial times, and the latest IPCC report indicates an additional 0.5 to 1.3 °C of warming by mid-century with continental locations warming at a greater rate than the oceans.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite

Bench terraces, agricultural practices and viticultural zoning in Ribeira Sacra (Galicia, Spain).

L’aire d’AOC Ribeira Sacra s’étend sur plus de 200 km au large des versants escarpés du Miño et du Sil, dans la Galice (Espagne).

Ugni blanc berry and wine composition impacted by thirteen rootstocks

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.