terclim by ICS banner
IVES 9 IVES Conference Series 9 Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

Abstract

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir.  The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Maisa M.M. Lima1 and Ron C. Runnebaum1,2

1Department of Viticulture & Enology, University of California, Davis, USA
2Department of Chemical Engineering, University of California, Davis, USA

Contact the author

Keywords

GC-MS, ICP-MS, terroir

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

The pyramidal organization of AOC in France: a process of identification and valorisation of terroirs

English version: Result of their history, some famous French wine countries such as Burgundy, Bordeaux or Alsace, have a hierarchical organization of their Appellations of Controlled Origin (AOC): AOC regional, communal, Premier Cru, Grand Cru.