terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Abstract

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes. The aim of this work was to trigger SAR by suppressing NPR3, and to investigate how plant response affects its ability to recruit beneficial microorganisms, specifically arbuscular mycorrhizal fungi (AMF). To this aim, embryogenic calli were obtained from anther and ovaries of grapevine (cultivar Chardonnay) and NPR3 knock out lines were achieved using CRISPR/Cas9 technique. Three regenerated lines, along with a backbone and a wild-type lines, were inoculated in axenic condition with the AMF Rhizophagus irregularis to test their recruitment ability. After the acclimatation, plants were transferred in the greenhouse and forty-five days later both roots and leaves were collected. Root colonization was evaluated using the Trouvelot method and significant differences in colonization level were observed among plants. Consequently, root DNA and RNA were extracted for metabarcoding and RNAseq analysis. Additionally, metabolomic analysis targeting metabolites involved in plant-microorganism interactions are ongoing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ivan Bevilacqua1,2, Loredana Moffa1, Serena Varotto2, Raffaella Balestrini3, Walter Chitarra1,3, Luca Nerva1,3

1Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology (CREA-VE). Via XXVIII Aprile, 26, 31015 Conegliano (TV), Italy
2University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell’Università 16 – 35020 Legnaro (Pd)
3National Research Council of Italy – Institute for Sustainable Plant Protection (IPSP-CNR). Strada delle Cacce, 73, 10135 Torino (TO), Italy 

Contact the author*

Keywords

CRISPR/Cas9, grapevine, arbuscular mycorrhizal fungi (AMF), Systemic Acquired Resistance (SAR), multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.

Grape byproducts as source of resveratrol oligomers for the development of antifungal extracts

Grape canes are a non-recycled byproduct of wine industry (1-5 tons per hectare per year) containing valuable phytochemicals of medicine and agronomical interest. Resveratrol and wine polyphenols are known to exert a plethora of health-promoting effects including antioxidant capacity, cardioprotection, anticancer activity, anti-inflammatory effects, and estrogenic/antiestrogenic properties (Guerrero et al. 2009). Additionally, resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance (Chang et al. 2011). Our project aims to develop polyphenol-rich grape cane extracts to fight phytopathogenic or clinically relevant fungi. We initiate the project with the development of analytical methods to analyze resveratrol mono- and oligomers (dimers, trimers and tetramers) from grape canes and we evaluate their potential activity against clinically relevant opportunistic fungal pathogens (Houillé et al. 2014).

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes