terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Abstract

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes. The aim of this work was to trigger SAR by suppressing NPR3, and to investigate how plant response affects its ability to recruit beneficial microorganisms, specifically arbuscular mycorrhizal fungi (AMF). To this aim, embryogenic calli were obtained from anther and ovaries of grapevine (cultivar Chardonnay) and NPR3 knock out lines were achieved using CRISPR/Cas9 technique. Three regenerated lines, along with a backbone and a wild-type lines, were inoculated in axenic condition with the AMF Rhizophagus irregularis to test their recruitment ability. After the acclimatation, plants were transferred in the greenhouse and forty-five days later both roots and leaves were collected. Root colonization was evaluated using the Trouvelot method and significant differences in colonization level were observed among plants. Consequently, root DNA and RNA were extracted for metabarcoding and RNAseq analysis. Additionally, metabolomic analysis targeting metabolites involved in plant-microorganism interactions are ongoing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ivan Bevilacqua1,2, Loredana Moffa1, Serena Varotto2, Raffaella Balestrini3, Walter Chitarra1,3, Luca Nerva1,3

1Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology (CREA-VE). Via XXVIII Aprile, 26, 31015 Conegliano (TV), Italy
2University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell’Università 16 – 35020 Legnaro (Pd)
3National Research Council of Italy – Institute for Sustainable Plant Protection (IPSP-CNR). Strada delle Cacce, 73, 10135 Torino (TO), Italy 

Contact the author*

Keywords

CRISPR/Cas9, grapevine, arbuscular mycorrhizal fungi (AMF), Systemic Acquired Resistance (SAR), multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exploring magnesium defficiency in Welschriesling grapevines: A multi-omics approach to address viticultural challenges

Magnesium (Mg) deficiency poses a significant challenge to viticulture, particularly affecting Welschriesling (WR), a key grape variety in Austrian and Central European vineyards.

Agroclimatic characterization of Monreale DOC appellation for vine growing

This paper presents the results of an agroclimatic study of the viticulture area called DOC Monreale (Pa), Italy, which was carried out with the aim to supply a working instrument supporting viticulture planning.

Influence of ‘pinotage’ defoliation on fruit and wine quality

Among the different management techniques in Viticulture, which have
been developed with the purpose of optimizing the interception of sunlight, the photosynthetic capacity of
the plant and the microclimate of the clusters, especially in varieties that show excess vigor, the management of defoliation presents great importance. The defoliation consists of the removal of leaves that cover or that are in direct contact with the curls, which can cause physical damages in the berries, and aims to balance the relation between part area and number of fruits, providing the aeration and insolation in the interior of the vineyard, as well as reduce the incidence of rot in order to achieve greater efficiency in phytosanitary treatments and quality musts.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.