terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Abstract

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes. The aim of this work was to trigger SAR by suppressing NPR3, and to investigate how plant response affects its ability to recruit beneficial microorganisms, specifically arbuscular mycorrhizal fungi (AMF). To this aim, embryogenic calli were obtained from anther and ovaries of grapevine (cultivar Chardonnay) and NPR3 knock out lines were achieved using CRISPR/Cas9 technique. Three regenerated lines, along with a backbone and a wild-type lines, were inoculated in axenic condition with the AMF Rhizophagus irregularis to test their recruitment ability. After the acclimatation, plants were transferred in the greenhouse and forty-five days later both roots and leaves were collected. Root colonization was evaluated using the Trouvelot method and significant differences in colonization level were observed among plants. Consequently, root DNA and RNA were extracted for metabarcoding and RNAseq analysis. Additionally, metabolomic analysis targeting metabolites involved in plant-microorganism interactions are ongoing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ivan Bevilacqua1,2, Loredana Moffa1, Serena Varotto2, Raffaella Balestrini3, Walter Chitarra1,3, Luca Nerva1,3

1Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology (CREA-VE). Via XXVIII Aprile, 26, 31015 Conegliano (TV), Italy
2University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell’Università 16 – 35020 Legnaro (Pd)
3National Research Council of Italy – Institute for Sustainable Plant Protection (IPSP-CNR). Strada delle Cacce, 73, 10135 Torino (TO), Italy 

Contact the author*

Keywords

CRISPR/Cas9, grapevine, arbuscular mycorrhizal fungi (AMF), Systemic Acquired Resistance (SAR), multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Analysing consumers’ decision-making process for non-alcoholic spirit drinks and dehalcolized aromatized wines 

In recent years, the consumption of alcoholic beverages is changing, driven by evolving consumer preferences and societal trends, including a wave of health consciousness. Among these changes, the emergence and proliferation of nolo (no alcohol/low alcohol) alcoholic beverages have gained significant attention within the industry. Nolo alcohol beverages are produced to emulate the appearance, aroma, and taste of alcoholic beverages, potentially facilitating a sense of social integration when consuming a product that closely resembles alcohol.

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance.

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Early Elgo Demetra: the new pink table variety seedless with big berry and resistant

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new pink “Early Elgo Demetra” variety.