terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

Abstract

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes. The aim of this work was to trigger SAR by suppressing NPR3, and to investigate how plant response affects its ability to recruit beneficial microorganisms, specifically arbuscular mycorrhizal fungi (AMF). To this aim, embryogenic calli were obtained from anther and ovaries of grapevine (cultivar Chardonnay) and NPR3 knock out lines were achieved using CRISPR/Cas9 technique. Three regenerated lines, along with a backbone and a wild-type lines, were inoculated in axenic condition with the AMF Rhizophagus irregularis to test their recruitment ability. After the acclimatation, plants were transferred in the greenhouse and forty-five days later both roots and leaves were collected. Root colonization was evaluated using the Trouvelot method and significant differences in colonization level were observed among plants. Consequently, root DNA and RNA were extracted for metabarcoding and RNAseq analysis. Additionally, metabolomic analysis targeting metabolites involved in plant-microorganism interactions are ongoing.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ivan Bevilacqua1,2, Loredana Moffa1, Serena Varotto2, Raffaella Balestrini3, Walter Chitarra1,3, Luca Nerva1,3

1Council for Agricultural Research and Economics – Research Centre for Viticulture and Enology (CREA-VE). Via XXVIII Aprile, 26, 31015 Conegliano (TV), Italy
2University of Padua, Department of Agronomy, Food, Natural Resources, Animals and Environment, Agripolis, Viale dell’Università 16 – 35020 Legnaro (Pd)
3National Research Council of Italy – Institute for Sustainable Plant Protection (IPSP-CNR). Strada delle Cacce, 73, 10135 Torino (TO), Italy 

Contact the author*

Keywords

CRISPR/Cas9, grapevine, arbuscular mycorrhizal fungi (AMF), Systemic Acquired Resistance (SAR), multi-omics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

The future of wine grape growing regions in europe

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science.

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality.

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries.