terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - New biotechnological tools 9 Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Abstract

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Utilizing the advancements in CRISPR/Cas9 genome editing, this project aims to modify the VviMYB60 promoter region to lower gene expression, thereby reducing stomatal opening in grapevines. Binary vectors for genome editing were constructed to target two specific regions of the VviMYB60 promoter. Agrobacterium-mediated transformation was performed on Chardonnay embryogenic calli, resulting in the successful regeneration of plants under selection conditions. Sanger sequencing analysis of the targeted region confirmed the occurrence of genetic edits in four of the six lines analyzed so far.

To further characterize the edited lines, next-generation sequencing will be utilized, providing a more comprehensive understanding of the mutations, as well as gene expression of VviMYB60 will be evaluated to confirm that the editing reduces its expression. Morphological and physiological parameters will be measured after acclimatation in greenhouse and finally these edited lines will undergo drought tolerance testing to assess their performance.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Manuela Campa1*, Loredana Moffa2, Luca Nerva2, Walter Chitarra2, Johan Burger1

1 Genetics Department, Faculty of Agrisciences, Stellenbosch University, 7600 Stellenbosch, South Africa
2 Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano (Italy)

Contact the author*

Keywords

CRISPR/Cas9, VviMYB60, promoter, drought tolerance, stomatal regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.

Similarities among wine aromas and landscape scents around the vineyard in five Mediterranean sites

We compared 68 aroma compounds in wines from 5 vineyards in order to see similarities among the wine aroma and the scent of some of the main native plants from the respective vineyards.

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Optimization Of Glutathione Extraction From White Wine Lees By Doelhert Matrix

Glutathione (L-g-glutamyl-L-cysteinyl-glycine) is a tripeptide which contains three constitutive amino acids: glutamate, cysteine and glycine. It is present in plants and foods, and fruits like grapes.